Spaces:
Running
Running
File size: 31,370 Bytes
9b2107c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 |
import os
from dataclasses import dataclass
import librosa
import torch
import torch.nn.functional as F
import torchaudio
from coqpit import Coqpit
from TTS.tts.layers.xtts.gpt import GPT
from TTS.tts.layers.xtts.hifigan_decoder import HifiDecoder
from TTS.tts.layers.xtts.stream_generator import init_stream_support
from TTS.tts.layers.xtts.tokenizer import VoiceBpeTokenizer, split_sentence
from TTS.tts.models.base_tts import BaseTTS
from TTS.utils.io import load_fsspec
init_stream_support()
def wav_to_mel_cloning(
wav,
mel_norms_file="../experiments/clips_mel_norms.pth",
mel_norms=None,
device=torch.device("cpu"),
n_fft=4096,
hop_length=1024,
win_length=4096,
power=2,
normalized=False,
sample_rate=22050,
f_min=0,
f_max=8000,
n_mels=80,
):
"""
Convert waveform to mel-spectrogram with hard-coded parameters for cloning.
Args:
wav (torch.Tensor): Input waveform tensor.
mel_norms_file (str): Path to mel-spectrogram normalization file.
mel_norms (torch.Tensor): Mel-spectrogram normalization tensor.
device (torch.device): Device to use for computation.
Returns:
torch.Tensor: Mel-spectrogram tensor.
"""
mel_stft = torchaudio.transforms.MelSpectrogram(
n_fft=n_fft,
hop_length=hop_length,
win_length=win_length,
power=power,
normalized=normalized,
sample_rate=sample_rate,
f_min=f_min,
f_max=f_max,
n_mels=n_mels,
norm="slaney",
).to(device)
wav = wav.to(device)
mel = mel_stft(wav)
mel = torch.log(torch.clamp(mel, min=1e-5))
if mel_norms is None:
mel_norms = torch.load(mel_norms_file, map_location=device)
mel = mel / mel_norms.unsqueeze(0).unsqueeze(-1)
return mel
def load_audio(audiopath, sampling_rate):
# better load setting following: https://github.com/faroit/python_audio_loading_benchmark
# torchaudio should chose proper backend to load audio depending on platform
audio, lsr = torchaudio.load(audiopath)
# stereo to mono if needed
if audio.size(0) != 1:
audio = torch.mean(audio, dim=0, keepdim=True)
if lsr != sampling_rate:
audio = torchaudio.functional.resample(audio, lsr, sampling_rate)
# Check some assumptions about audio range. This should be automatically fixed in load_wav_to_torch, but might not be in some edge cases, where we should squawk.
# '10' is arbitrarily chosen since it seems like audio will often "overdrive" the [-1,1] bounds.
if torch.any(audio > 10) or not torch.any(audio < 0):
print(f"Error with {audiopath}. Max={audio.max()} min={audio.min()}")
# clip audio invalid values
audio.clip_(-1, 1)
return audio
def pad_or_truncate(t, length):
"""
Ensure a given tensor t has a specified sequence length by either padding it with zeros or clipping it.
Args:
t (torch.Tensor): The input tensor to be padded or truncated.
length (int): The desired length of the tensor.
Returns:
torch.Tensor: The padded or truncated tensor.
"""
tp = t[..., :length]
if t.shape[-1] == length:
tp = t
elif t.shape[-1] < length:
tp = F.pad(t, (0, length - t.shape[-1]))
return tp
@dataclass
class XttsAudioConfig(Coqpit):
"""
Configuration class for audio-related parameters in the XTTS model.
Args:
sample_rate (int): The sample rate in which the GPT operates.
output_sample_rate (int): The sample rate of the output audio waveform.
"""
sample_rate: int = 22050
output_sample_rate: int = 24000
@dataclass
class XttsArgs(Coqpit):
"""A dataclass to represent XTTS model arguments that define the model structure.
Args:
gpt_batch_size (int): The size of the auto-regressive batch.
enable_redaction (bool, optional): Whether to enable redaction. Defaults to True.
kv_cache (bool, optional): Whether to use the kv_cache. Defaults to True.
gpt_checkpoint (str, optional): The checkpoint for the autoregressive model. Defaults to None.
clvp_checkpoint (str, optional): The checkpoint for the ConditionalLatentVariablePerseq model. Defaults to None.
decoder_checkpoint (str, optional): The checkpoint for the DiffTTS model. Defaults to None.
num_chars (int, optional): The maximum number of characters to generate. Defaults to 255.
For GPT model:
gpt_max_audio_tokens (int, optional): The maximum mel tokens for the autoregressive model. Defaults to 604.
gpt_max_text_tokens (int, optional): The maximum text tokens for the autoregressive model. Defaults to 402.
gpt_max_prompt_tokens (int, optional): The maximum prompt tokens or the autoregressive model. Defaults to 70.
gpt_layers (int, optional): The number of layers for the autoregressive model. Defaults to 30.
gpt_n_model_channels (int, optional): The model dimension for the autoregressive model. Defaults to 1024.
gpt_n_heads (int, optional): The number of heads for the autoregressive model. Defaults to 16.
gpt_number_text_tokens (int, optional): The number of text tokens for the autoregressive model. Defaults to 255.
gpt_start_text_token (int, optional): The start text token for the autoregressive model. Defaults to 255.
gpt_checkpointing (bool, optional): Whether to use checkpointing for the autoregressive model. Defaults to False.
gpt_train_solo_embeddings (bool, optional): Whether to train embeddings for the autoregressive model. Defaults to False.
gpt_code_stride_len (int, optional): The hop_size of dvae and consequently of the gpt output. Defaults to 1024.
gpt_use_masking_gt_prompt_approach (bool, optional): If True, it will use ground truth as prompt and it will mask the loss to avoid repetition. Defaults to True.
gpt_use_perceiver_resampler (bool, optional): If True, it will use perceiver resampler from flamingo paper - https://arxiv.org/abs/2204.14198. Defaults to False.
"""
gpt_batch_size: int = 1
enable_redaction: bool = False
kv_cache: bool = True
gpt_checkpoint: str = None
clvp_checkpoint: str = None
decoder_checkpoint: str = None
num_chars: int = 255
# XTTS GPT Encoder params
tokenizer_file: str = ""
gpt_max_audio_tokens: int = 605
gpt_max_text_tokens: int = 402
gpt_max_prompt_tokens: int = 70
gpt_layers: int = 30
gpt_n_model_channels: int = 1024
gpt_n_heads: int = 16
gpt_number_text_tokens: int = None
gpt_start_text_token: int = None
gpt_stop_text_token: int = None
gpt_num_audio_tokens: int = 8194
gpt_start_audio_token: int = 8192
gpt_stop_audio_token: int = 8193
gpt_code_stride_len: int = 1024
gpt_use_masking_gt_prompt_approach: bool = True
gpt_use_perceiver_resampler: bool = False
# HifiGAN Decoder params
input_sample_rate: int = 22050
output_sample_rate: int = 24000
output_hop_length: int = 256
decoder_input_dim: int = 1024
d_vector_dim: int = 512
cond_d_vector_in_each_upsampling_layer: bool = True
# constants
duration_const: int = 102400
class Xtts(BaseTTS):
"""ⓍTTS model implementation.
❗ Currently it only supports inference.
Examples:
>>> from TTS.tts.configs.xtts_config import XttsConfig
>>> from TTS.tts.models.xtts import Xtts
>>> config = XttsConfig()
>>> model = Xtts.inif_from_config(config)
>>> model.load_checkpoint(config, checkpoint_dir="paths/to/models_dir/", eval=True)
"""
def __init__(self, config: Coqpit):
super().__init__(config, ap=None, tokenizer=None)
self.mel_stats_path = None
self.config = config
self.gpt_checkpoint = self.args.gpt_checkpoint
self.decoder_checkpoint = self.args.decoder_checkpoint # TODO: check if this is even needed
self.models_dir = config.model_dir
self.gpt_batch_size = self.args.gpt_batch_size
self.tokenizer = VoiceBpeTokenizer()
self.gpt = None
self.init_models()
self.register_buffer("mel_stats", torch.ones(80))
def init_models(self):
"""Initialize the models. We do it here since we need to load the tokenizer first."""
if self.tokenizer.tokenizer is not None:
self.args.gpt_number_text_tokens = self.tokenizer.get_number_tokens()
self.args.gpt_start_text_token = self.tokenizer.tokenizer.token_to_id("[START]")
self.args.gpt_stop_text_token = self.tokenizer.tokenizer.token_to_id("[STOP]")
if self.args.gpt_number_text_tokens:
self.gpt = GPT(
layers=self.args.gpt_layers,
model_dim=self.args.gpt_n_model_channels,
start_text_token=self.args.gpt_start_text_token,
stop_text_token=self.args.gpt_stop_text_token,
heads=self.args.gpt_n_heads,
max_text_tokens=self.args.gpt_max_text_tokens,
max_mel_tokens=self.args.gpt_max_audio_tokens,
max_prompt_tokens=self.args.gpt_max_prompt_tokens,
number_text_tokens=self.args.gpt_number_text_tokens,
num_audio_tokens=self.args.gpt_num_audio_tokens,
start_audio_token=self.args.gpt_start_audio_token,
stop_audio_token=self.args.gpt_stop_audio_token,
use_perceiver_resampler=self.args.gpt_use_perceiver_resampler,
code_stride_len=self.args.gpt_code_stride_len,
)
self.hifigan_decoder = HifiDecoder(
input_sample_rate=self.args.input_sample_rate,
output_sample_rate=self.args.output_sample_rate,
output_hop_length=self.args.output_hop_length,
ar_mel_length_compression=self.args.gpt_code_stride_len,
decoder_input_dim=self.args.decoder_input_dim,
d_vector_dim=self.args.d_vector_dim,
cond_d_vector_in_each_upsampling_layer=self.args.cond_d_vector_in_each_upsampling_layer,
)
@property
def device(self):
return next(self.parameters()).device
@torch.inference_mode()
def get_gpt_cond_latents(self, audio, sr, length: int = 30, chunk_length: int = 6):
"""Compute the conditioning latents for the GPT model from the given audio.
Args:
audio (tensor): audio tensor.
sr (int): Sample rate of the audio.
length (int): Length of the audio in seconds. If < 0, use the whole audio. Defaults to 30.
chunk_length (int): Length of the audio chunks in seconds. When `length == chunk_length`, the whole audio
is being used without chunking. It must be < `length`. Defaults to 6.
"""
if sr != 22050:
audio = torchaudio.functional.resample(audio, sr, 22050)
if length > 0:
audio = audio[:, : 22050 * length]
if self.args.gpt_use_perceiver_resampler:
style_embs = []
for i in range(0, audio.shape[1], 22050 * chunk_length):
audio_chunk = audio[:, i : i + 22050 * chunk_length]
mel_chunk = wav_to_mel_cloning(
audio_chunk,
mel_norms=self.mel_stats.cpu(),
n_fft=2048,
hop_length=256,
win_length=1024,
power=2,
normalized=False,
sample_rate=22050,
f_min=0,
f_max=8000,
n_mels=80,
)
style_emb = self.gpt.get_style_emb(mel_chunk.to(self.device), None)
style_embs.append(style_emb)
# mean style embedding
cond_latent = torch.stack(style_embs).mean(dim=0)
else:
mel = wav_to_mel_cloning(
audio,
mel_norms=self.mel_stats.cpu(),
n_fft=4096,
hop_length=1024,
win_length=4096,
power=2,
normalized=False,
sample_rate=22050,
f_min=0,
f_max=8000,
n_mels=80,
)
cond_latent = self.gpt.get_style_emb(mel.to(self.device))
return cond_latent.transpose(1, 2)
@torch.inference_mode()
def get_speaker_embedding(self, audio, sr):
audio_16k = torchaudio.functional.resample(audio, sr, 16000)
return (
self.hifigan_decoder.speaker_encoder.forward(audio_16k.to(self.device), l2_norm=True)
.unsqueeze(-1)
.to(self.device)
)
@torch.inference_mode()
def get_conditioning_latents(
self,
audio_path,
max_ref_length=30,
gpt_cond_len=6,
gpt_cond_chunk_len=6,
librosa_trim_db=None,
sound_norm_refs=False,
load_sr=22050,
):
"""Get the conditioning latents for the GPT model from the given audio.
Args:
audio_path (str or List[str]): Path to reference audio file(s).
max_ref_length (int): Maximum length of each reference audio in seconds. Defaults to 30.
gpt_cond_len (int): Length of the audio used for gpt latents. Defaults to 6.
gpt_cond_chunk_len (int): Chunk length used for gpt latents. It must be <= gpt_conf_len. Defaults to 6.
librosa_trim_db (int, optional): Trim the audio using this value. If None, not trimming. Defaults to None.
sound_norm_refs (bool, optional): Whether to normalize the audio. Defaults to False.
load_sr (int, optional): Sample rate to load the audio. Defaults to 24000.
"""
# deal with multiples references
if not isinstance(audio_path, list):
audio_paths = [audio_path]
else:
audio_paths = audio_path
speaker_embeddings = []
audios = []
speaker_embedding = None
for file_path in audio_paths:
audio = load_audio(file_path, load_sr)
audio = audio[:, : load_sr * max_ref_length].to(self.device)
if sound_norm_refs:
audio = (audio / torch.abs(audio).max()) * 0.75
if librosa_trim_db is not None:
audio = librosa.effects.trim(audio, top_db=librosa_trim_db)[0]
# compute latents for the decoder
speaker_embedding = self.get_speaker_embedding(audio, load_sr)
speaker_embeddings.append(speaker_embedding)
audios.append(audio)
# merge all the audios and compute the latents for the gpt
full_audio = torch.cat(audios, dim=-1)
gpt_cond_latents = self.get_gpt_cond_latents(
full_audio, load_sr, length=gpt_cond_len, chunk_length=gpt_cond_chunk_len
) # [1, 1024, T]
if speaker_embeddings:
speaker_embedding = torch.stack(speaker_embeddings)
speaker_embedding = speaker_embedding.mean(dim=0)
return gpt_cond_latents, speaker_embedding
def synthesize(self, text, config, speaker_wav, language, **kwargs):
"""Synthesize speech with the given input text.
Args:
text (str): Input text.
config (XttsConfig): Config with inference parameters.
speaker_wav (list): List of paths to the speaker audio files to be used for cloning.
language (str): Language ID of the speaker.
**kwargs: Inference settings. See `inference()`.
Returns:
A dictionary of the output values with `wav` as output waveform, `deterministic_seed` as seed used at inference,
`text_input` as text token IDs after tokenizer, `voice_samples` as samples used for cloning, `conditioning_latents`
as latents used at inference.
"""
return self.inference_with_config(text, config, ref_audio_path=speaker_wav, language=language, **kwargs)
def inference_with_config(self, text, config, ref_audio_path, language, **kwargs):
"""
inference with config
"""
assert (
"zh-cn" if language == "zh" else language in self.config.languages
), f" ❗ Language {language} is not supported. Supported languages are {self.config.languages}"
# Use generally found best tuning knobs for generation.
settings = {
"temperature": config.temperature,
"length_penalty": config.length_penalty,
"repetition_penalty": config.repetition_penalty,
"top_k": config.top_k,
"top_p": config.top_p,
"gpt_cond_len": config.gpt_cond_len,
"gpt_cond_chunk_len": config.gpt_cond_chunk_len,
"max_ref_len": config.max_ref_len,
"sound_norm_refs": config.sound_norm_refs,
}
settings.update(kwargs) # allow overriding of preset settings with kwargs
return self.full_inference(text, ref_audio_path, language, **settings)
@torch.inference_mode()
def full_inference(
self,
text,
ref_audio_path,
language,
# GPT inference
temperature=0.75,
length_penalty=1.0,
repetition_penalty=10.0,
top_k=50,
top_p=0.85,
do_sample=True,
# Cloning
gpt_cond_len=30,
gpt_cond_chunk_len=6,
max_ref_len=10,
sound_norm_refs=False,
**hf_generate_kwargs,
):
"""
This function produces an audio clip of the given text being spoken with the given reference voice.
Args:
text: (str) Text to be spoken.
ref_audio_path: (str) Path to a reference audio file to be used for cloning. This audio file should be >3
seconds long.
language: (str) Language of the voice to be generated.
temperature: (float) The softmax temperature of the autoregressive model. Defaults to 0.65.
length_penalty: (float) A length penalty applied to the autoregressive decoder. Higher settings causes the
model to produce more terse outputs. Defaults to 1.0.
repetition_penalty: (float) A penalty that prevents the autoregressive decoder from repeating itself during
decoding. Can be used to reduce the incidence of long silences or "uhhhhhhs", etc. Defaults to 2.0.
top_k: (int) K value used in top-k sampling. [0,inf]. Lower values mean the decoder produces more "likely"
(aka boring) outputs. Defaults to 50.
top_p: (float) P value used in nucleus sampling. (0,1]. Lower values mean the decoder produces more "likely"
(aka boring) outputs. Defaults to 0.8.
gpt_cond_len: (int) Length of the audio used for cloning. If audio is shorter, then audio length is used
else the first `gpt_cond_len` secs is used. Defaults to 30 seconds.
gpt_cond_chunk_len: (int) Chunk length used for cloning. It must be <= `gpt_cond_len`.
If gpt_cond_len == gpt_cond_chunk_len, no chunking. Defaults to 6 seconds.
hf_generate_kwargs: (**kwargs) The huggingface Transformers generate API is used for the autoregressive
transformer. Extra keyword args fed to this function get forwarded directly to that API. Documentation
here: https://huggingface.co/docs/transformers/internal/generation_utils
Returns:
Generated audio clip(s) as a torch tensor. Shape 1,S if k=1 else, (k,1,S) where S is the sample length.
Sample rate is 24kHz.
"""
(gpt_cond_latent, speaker_embedding) = self.get_conditioning_latents(
audio_path=ref_audio_path,
gpt_cond_len=gpt_cond_len,
gpt_cond_chunk_len=gpt_cond_chunk_len,
max_ref_length=max_ref_len,
sound_norm_refs=sound_norm_refs,
)
return self.inference(
text,
language,
gpt_cond_latent,
speaker_embedding,
temperature=temperature,
length_penalty=length_penalty,
repetition_penalty=repetition_penalty,
top_k=top_k,
top_p=top_p,
do_sample=do_sample,
**hf_generate_kwargs,
)
@torch.inference_mode()
def inference(
self,
text,
language,
gpt_cond_latent,
speaker_embedding,
# GPT inference
temperature=0.75,
length_penalty=1.0,
repetition_penalty=10.0,
top_k=50,
top_p=0.85,
do_sample=True,
num_beams=1,
speed=1.0,
enable_text_splitting=False,
**hf_generate_kwargs,
):
language = language.split("-")[0] # remove the country code
length_scale = 1.0 / max(speed, 0.05)
if enable_text_splitting:
text = split_sentence(text, language, self.tokenizer.char_limits[language])
else:
text = [text]
wavs = []
gpt_latents_list = []
for sent in text:
sent = sent.strip().lower()
text_tokens = torch.IntTensor(self.tokenizer.encode(sent, lang=language)).unsqueeze(0).to(self.device)
assert (
text_tokens.shape[-1] < self.args.gpt_max_text_tokens
), " ❗ XTTS can only generate text with a maximum of 400 tokens."
with torch.no_grad():
gpt_codes = self.gpt.generate(
cond_latents=gpt_cond_latent,
text_inputs=text_tokens,
input_tokens=None,
do_sample=do_sample,
top_p=top_p,
top_k=top_k,
temperature=temperature,
num_return_sequences=self.gpt_batch_size,
num_beams=num_beams,
length_penalty=length_penalty,
repetition_penalty=repetition_penalty,
output_attentions=False,
**hf_generate_kwargs,
)
expected_output_len = torch.tensor(
[gpt_codes.shape[-1] * self.gpt.code_stride_len], device=text_tokens.device
)
text_len = torch.tensor([text_tokens.shape[-1]], device=self.device)
gpt_latents = self.gpt(
text_tokens,
text_len,
gpt_codes,
expected_output_len,
cond_latents=gpt_cond_latent,
return_attentions=False,
return_latent=True,
)
if length_scale != 1.0:
gpt_latents = F.interpolate(
gpt_latents.transpose(1, 2), scale_factor=length_scale, mode="linear"
).transpose(1, 2)
gpt_latents_list.append(gpt_latents.cpu())
wavs.append(self.hifigan_decoder(gpt_latents, g=speaker_embedding).cpu().squeeze())
return {
"wav": torch.cat(wavs, dim=0).numpy(),
"gpt_latents": torch.cat(gpt_latents_list, dim=1).numpy(),
"speaker_embedding": speaker_embedding,
}
def handle_chunks(self, wav_gen, wav_gen_prev, wav_overlap, overlap_len):
"""Handle chunk formatting in streaming mode"""
wav_chunk = wav_gen[:-overlap_len]
if wav_gen_prev is not None:
wav_chunk = wav_gen[(wav_gen_prev.shape[0] - overlap_len) : -overlap_len]
if wav_overlap is not None:
# cross fade the overlap section
if overlap_len > len(wav_chunk):
# wav_chunk is smaller than overlap_len, pass on last wav_gen
if wav_gen_prev is not None:
wav_chunk = wav_gen[(wav_gen_prev.shape[0] - overlap_len) :]
else:
# not expecting will hit here as problem happens on last chunk
wav_chunk = wav_gen[-overlap_len:]
return wav_chunk, wav_gen, None
else:
crossfade_wav = wav_chunk[:overlap_len]
crossfade_wav = crossfade_wav * torch.linspace(0.0, 1.0, overlap_len).to(crossfade_wav.device)
wav_chunk[:overlap_len] = wav_overlap * torch.linspace(1.0, 0.0, overlap_len).to(wav_overlap.device)
wav_chunk[:overlap_len] += crossfade_wav
wav_overlap = wav_gen[-overlap_len:]
wav_gen_prev = wav_gen
return wav_chunk, wav_gen_prev, wav_overlap
@torch.inference_mode()
def inference_stream(
self,
text,
language,
gpt_cond_latent,
speaker_embedding,
# Streaming
stream_chunk_size=20,
overlap_wav_len=1024,
# GPT inference
temperature=0.75,
length_penalty=1.0,
repetition_penalty=10.0,
top_k=50,
top_p=0.85,
do_sample=True,
speed=1.0,
enable_text_splitting=False,
**hf_generate_kwargs,
):
language = language.split("-")[0] # remove the country code
length_scale = 1.0 / max(speed, 0.05)
if enable_text_splitting:
text = split_sentence(text, language, self.tokenizer.char_limits[language])
else:
text = [text]
for sent in text:
sent = sent.strip().lower()
text_tokens = torch.IntTensor(self.tokenizer.encode(sent, lang=language)).unsqueeze(0).to(self.device)
assert (
text_tokens.shape[-1] < self.args.gpt_max_text_tokens
), " ❗ XTTS can only generate text with a maximum of 400 tokens."
fake_inputs = self.gpt.compute_embeddings(
gpt_cond_latent.to(self.device),
text_tokens,
)
gpt_generator = self.gpt.get_generator(
fake_inputs=fake_inputs,
top_k=top_k,
top_p=top_p,
temperature=temperature,
do_sample=do_sample,
num_beams=1,
num_return_sequences=1,
length_penalty=float(length_penalty),
repetition_penalty=float(repetition_penalty),
output_attentions=False,
output_hidden_states=True,
**hf_generate_kwargs,
)
last_tokens = []
all_latents = []
wav_gen_prev = None
wav_overlap = None
is_end = False
while not is_end:
try:
x, latent = next(gpt_generator)
last_tokens += [x]
all_latents += [latent]
except StopIteration:
is_end = True
if is_end or (stream_chunk_size > 0 and len(last_tokens) >= stream_chunk_size):
gpt_latents = torch.cat(all_latents, dim=0)[None, :]
if length_scale != 1.0:
gpt_latents = F.interpolate(
gpt_latents.transpose(1, 2), scale_factor=length_scale, mode="linear"
).transpose(1, 2)
wav_gen = self.hifigan_decoder(gpt_latents, g=speaker_embedding.to(self.device))
wav_chunk, wav_gen_prev, wav_overlap = self.handle_chunks(
wav_gen.squeeze(), wav_gen_prev, wav_overlap, overlap_wav_len
)
last_tokens = []
yield wav_chunk
def forward(self):
raise NotImplementedError(
"XTTS has a dedicated trainer, please check the XTTS docs: https://tts.readthedocs.io/en/dev/models/xtts.html#training"
)
def eval_step(self):
raise NotImplementedError(
"XTTS has a dedicated trainer, please check the XTTS docs: https://tts.readthedocs.io/en/dev/models/xtts.html#training"
)
@staticmethod
def init_from_config(config: "XttsConfig", **kwargs): # pylint: disable=unused-argument
return Xtts(config)
def eval(self): # pylint: disable=redefined-builtin
"""Sets the model to evaluation mode. Overrides the default eval() method to also set the GPT model to eval mode."""
self.gpt.init_gpt_for_inference()
super().eval()
def get_compatible_checkpoint_state_dict(self, model_path):
checkpoint = load_fsspec(model_path, map_location=torch.device("cpu"))["model"]
# remove xtts gpt trainer extra keys
ignore_keys = ["torch_mel_spectrogram_style_encoder", "torch_mel_spectrogram_dvae", "dvae"]
for key in list(checkpoint.keys()):
# check if it is from the coqui Trainer if so convert it
if key.startswith("xtts."):
new_key = key.replace("xtts.", "")
checkpoint[new_key] = checkpoint[key]
del checkpoint[key]
key = new_key
# remove unused keys
if key.split(".")[0] in ignore_keys:
del checkpoint[key]
return checkpoint
def load_checkpoint(
self,
config,
checkpoint_dir=None,
checkpoint_path=None,
vocab_path=None,
eval=True,
strict=True,
use_deepspeed=False,
):
"""
Loads a checkpoint from disk and initializes the model's state and tokenizer.
Args:
config (dict): The configuration dictionary for the model.
checkpoint_dir (str, optional): The directory where the checkpoint is stored. Defaults to None.
checkpoint_path (str, optional): The path to the checkpoint file. Defaults to None.
vocab_path (str, optional): The path to the vocabulary file. Defaults to None.
eval (bool, optional): Whether to set the model to evaluation mode. Defaults to True.
strict (bool, optional): Whether to strictly enforce that the keys in the checkpoint match the keys in the model. Defaults to True.
Returns:
None
"""
model_path = checkpoint_path or os.path.join(checkpoint_dir, "model.pth")
vocab_path = vocab_path or os.path.join(checkpoint_dir, "vocab.json")
if os.path.exists(vocab_path):
self.tokenizer = VoiceBpeTokenizer(vocab_file=vocab_path)
self.init_models()
checkpoint = self.get_compatible_checkpoint_state_dict(model_path)
# deal with v1 and v1.1. V1 has the init_gpt_for_inference keys, v1.1 do not
try:
self.load_state_dict(checkpoint, strict=strict)
except:
if eval:
self.gpt.init_gpt_for_inference(kv_cache=self.args.kv_cache)
self.load_state_dict(checkpoint, strict=strict)
if eval:
self.hifigan_decoder.eval()
self.gpt.init_gpt_for_inference(kv_cache=self.args.kv_cache, use_deepspeed=use_deepspeed)
self.gpt.eval()
def train_step(self):
raise NotImplementedError(
"XTTS has a dedicated trainer, please check the XTTS docs: https://tts.readthedocs.io/en/dev/models/xtts.html#training"
)
|