File size: 6,672 Bytes
9b2107c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
import librosa
import matplotlib
import matplotlib.pyplot as plt
import numpy as np
import torch
from matplotlib.colors import LogNorm

matplotlib.use("Agg")


def plot_alignment(alignment, info=None, fig_size=(16, 10), title=None, output_fig=False, plot_log=False):
    if isinstance(alignment, torch.Tensor):
        alignment_ = alignment.detach().cpu().numpy().squeeze()
    else:
        alignment_ = alignment
    alignment_ = alignment_.astype(np.float32) if alignment_.dtype == np.float16 else alignment_
    fig, ax = plt.subplots(figsize=fig_size)
    im = ax.imshow(
        alignment_.T, aspect="auto", origin="lower", interpolation="none", norm=LogNorm() if plot_log else None
    )
    fig.colorbar(im, ax=ax)
    xlabel = "Decoder timestep"
    if info is not None:
        xlabel += "\n\n" + info
    plt.xlabel(xlabel)
    plt.ylabel("Encoder timestep")
    # plt.yticks(range(len(text)), list(text))
    plt.tight_layout()
    if title is not None:
        plt.title(title)
    if not output_fig:
        plt.close()
    return fig


def plot_spectrogram(spectrogram, ap=None, fig_size=(16, 10), output_fig=False):
    if isinstance(spectrogram, torch.Tensor):
        spectrogram_ = spectrogram.detach().cpu().numpy().squeeze().T
    else:
        spectrogram_ = spectrogram.T
    spectrogram_ = spectrogram_.astype(np.float32) if spectrogram_.dtype == np.float16 else spectrogram_
    if ap is not None:
        spectrogram_ = ap.denormalize(spectrogram_)  # pylint: disable=protected-access
    fig = plt.figure(figsize=fig_size)
    plt.imshow(spectrogram_, aspect="auto", origin="lower")
    plt.colorbar()
    plt.tight_layout()
    if not output_fig:
        plt.close()
    return fig


def plot_pitch(pitch, spectrogram, ap=None, fig_size=(30, 10), output_fig=False):
    """Plot pitch curves on top of the spectrogram.

    Args:
        pitch (np.array): Pitch values.
        spectrogram (np.array): Spectrogram values.

    Shapes:
        pitch: :math:`(T,)`
        spec: :math:`(C, T)`
    """

    if isinstance(spectrogram, torch.Tensor):
        spectrogram_ = spectrogram.detach().cpu().numpy().squeeze().T
    else:
        spectrogram_ = spectrogram.T
    spectrogram_ = spectrogram_.astype(np.float32) if spectrogram_.dtype == np.float16 else spectrogram_
    if ap is not None:
        spectrogram_ = ap.denormalize(spectrogram_)  # pylint: disable=protected-access

    old_fig_size = plt.rcParams["figure.figsize"]
    if fig_size is not None:
        plt.rcParams["figure.figsize"] = fig_size

    fig, ax = plt.subplots()

    ax.imshow(spectrogram_, aspect="auto", origin="lower")
    ax.set_xlabel("time")
    ax.set_ylabel("spec_freq")

    ax2 = ax.twinx()
    ax2.plot(pitch, linewidth=5.0, color="red")
    ax2.set_ylabel("F0")

    plt.rcParams["figure.figsize"] = old_fig_size
    if not output_fig:
        plt.close()
    return fig


def plot_avg_pitch(pitch, chars, fig_size=(30, 10), output_fig=False):
    """Plot pitch curves on top of the input characters.

    Args:
        pitch (np.array): Pitch values.
        chars (str): Characters to place to the x-axis.

    Shapes:
        pitch: :math:`(T,)`
    """
    old_fig_size = plt.rcParams["figure.figsize"]
    if fig_size is not None:
        plt.rcParams["figure.figsize"] = fig_size

    fig, ax = plt.subplots()

    x = np.array(range(len(chars)))
    my_xticks = chars
    plt.xticks(x, my_xticks)

    ax.set_xlabel("characters")
    ax.set_ylabel("freq")

    ax2 = ax.twinx()
    ax2.plot(pitch, linewidth=5.0, color="red")
    ax2.set_ylabel("F0")

    plt.rcParams["figure.figsize"] = old_fig_size
    if not output_fig:
        plt.close()
    return fig


def plot_avg_energy(energy, chars, fig_size=(30, 10), output_fig=False):
    """Plot energy curves on top of the input characters.

    Args:
        energy (np.array): energy values.
        chars (str): Characters to place to the x-axis.

    Shapes:
        energy: :math:`(T,)`
    """
    old_fig_size = plt.rcParams["figure.figsize"]
    if fig_size is not None:
        plt.rcParams["figure.figsize"] = fig_size

    fig, ax = plt.subplots()

    x = np.array(range(len(chars)))
    my_xticks = chars
    plt.xticks(x, my_xticks)

    ax.set_xlabel("characters")
    ax.set_ylabel("freq")

    ax2 = ax.twinx()
    ax2.plot(energy, linewidth=5.0, color="red")
    ax2.set_ylabel("energy")

    plt.rcParams["figure.figsize"] = old_fig_size
    if not output_fig:
        plt.close()
    return fig


def visualize(
    alignment,
    postnet_output,
    text,
    hop_length,
    CONFIG,
    tokenizer,
    stop_tokens=None,
    decoder_output=None,
    output_path=None,
    figsize=(8, 24),
    output_fig=False,
):
    """Intended to be used in Notebooks."""

    if decoder_output is not None:
        num_plot = 4
    else:
        num_plot = 3

    label_fontsize = 16
    fig = plt.figure(figsize=figsize)

    plt.subplot(num_plot, 1, 1)
    plt.imshow(alignment.T, aspect="auto", origin="lower", interpolation=None)
    plt.xlabel("Decoder timestamp", fontsize=label_fontsize)
    plt.ylabel("Encoder timestamp", fontsize=label_fontsize)
    # compute phoneme representation and back
    if CONFIG.use_phonemes:
        seq = tokenizer.text_to_ids(text)
        text = tokenizer.ids_to_text(seq)
        print(text)
    plt.yticks(range(len(text)), list(text))
    plt.colorbar()

    if stop_tokens is not None:
        # plot stopnet predictions
        plt.subplot(num_plot, 1, 2)
        plt.plot(range(len(stop_tokens)), list(stop_tokens))

    # plot postnet spectrogram
    plt.subplot(num_plot, 1, 3)
    librosa.display.specshow(
        postnet_output.T,
        sr=CONFIG.audio["sample_rate"],
        hop_length=hop_length,
        x_axis="time",
        y_axis="linear",
        fmin=CONFIG.audio["mel_fmin"],
        fmax=CONFIG.audio["mel_fmax"],
    )

    plt.xlabel("Time", fontsize=label_fontsize)
    plt.ylabel("Hz", fontsize=label_fontsize)
    plt.tight_layout()
    plt.colorbar()

    if decoder_output is not None:
        plt.subplot(num_plot, 1, 4)
        librosa.display.specshow(
            decoder_output.T,
            sr=CONFIG.audio["sample_rate"],
            hop_length=hop_length,
            x_axis="time",
            y_axis="linear",
            fmin=CONFIG.audio["mel_fmin"],
            fmax=CONFIG.audio["mel_fmax"],
        )
        plt.xlabel("Time", fontsize=label_fontsize)
        plt.ylabel("Hz", fontsize=label_fontsize)
        plt.tight_layout()
        plt.colorbar()

    if output_path:
        print(output_path)
        fig.savefig(output_path)
        plt.close()

    if not output_fig:
        plt.close()