Spaces:
Running
Running
File size: 23,945 Bytes
9b2107c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 |
from typing import Tuple
import torch
import torch.nn as nn # pylint: disable=consider-using-from-import
import torch.nn.functional as F
from torch.nn.utils import parametrize
from TTS.tts.layers.delightful_tts.kernel_predictor import KernelPredictor
def calc_same_padding(kernel_size: int) -> Tuple[int, int]:
pad = kernel_size // 2
return (pad, pad - (kernel_size + 1) % 2)
class ConvNorm(nn.Module):
"""A 1-dimensional convolutional layer with optional weight normalization.
This layer wraps a 1D convolutional layer from PyTorch and applies
optional weight normalization. The layer can be used in a similar way to
the convolutional layers in PyTorch's `torch.nn` module.
Args:
in_channels (int): The number of channels in the input signal.
out_channels (int): The number of channels in the output signal.
kernel_size (int, optional): The size of the convolving kernel.
Defaults to 1.
stride (int, optional): The stride of the convolution. Defaults to 1.
padding (int, optional): Zero-padding added to both sides of the input.
If `None`, the padding will be calculated so that the output has
the same length as the input. Defaults to `None`.
dilation (int, optional): Spacing between kernel elements. Defaults to 1.
bias (bool, optional): If `True`, add bias after convolution. Defaults to `True`.
w_init_gain (str, optional): The weight initialization function to use.
Can be either 'linear' or 'relu'. Defaults to 'linear'.
use_weight_norm (bool, optional): If `True`, apply weight normalization
to the convolutional weights. Defaults to `False`.
Shapes:
- Input: :math:`[N, D, T]`
- Output: :math:`[N, out_dim, T]` where `out_dim` is the number of output dimensions.
"""
def __init__(
self,
in_channels,
out_channels,
kernel_size=1,
stride=1,
padding=None,
dilation=1,
bias=True,
w_init_gain="linear",
use_weight_norm=False,
):
super(ConvNorm, self).__init__() # pylint: disable=super-with-arguments
if padding is None:
assert kernel_size % 2 == 1
padding = int(dilation * (kernel_size - 1) / 2)
self.kernel_size = kernel_size
self.dilation = dilation
self.use_weight_norm = use_weight_norm
conv_fn = nn.Conv1d
self.conv = conv_fn(
in_channels,
out_channels,
kernel_size=kernel_size,
stride=stride,
padding=padding,
dilation=dilation,
bias=bias,
)
nn.init.xavier_uniform_(self.conv.weight, gain=nn.init.calculate_gain(w_init_gain))
if self.use_weight_norm:
self.conv = nn.utils.parametrizations.weight_norm(self.conv)
def forward(self, signal, mask=None):
conv_signal = self.conv(signal)
if mask is not None:
# always re-zero output if mask is
# available to match zero-padding
conv_signal = conv_signal * mask
return conv_signal
class ConvLSTMLinear(nn.Module):
def __init__(
self,
in_dim,
out_dim,
n_layers=2,
n_channels=256,
kernel_size=3,
p_dropout=0.1,
lstm_type="bilstm",
use_linear=True,
):
super(ConvLSTMLinear, self).__init__() # pylint: disable=super-with-arguments
self.out_dim = out_dim
self.lstm_type = lstm_type
self.use_linear = use_linear
self.dropout = nn.Dropout(p=p_dropout)
convolutions = []
for i in range(n_layers):
conv_layer = ConvNorm(
in_dim if i == 0 else n_channels,
n_channels,
kernel_size=kernel_size,
stride=1,
padding=int((kernel_size - 1) / 2),
dilation=1,
w_init_gain="relu",
)
conv_layer = nn.utils.parametrizations.weight_norm(conv_layer.conv, name="weight")
convolutions.append(conv_layer)
self.convolutions = nn.ModuleList(convolutions)
if not self.use_linear:
n_channels = out_dim
if self.lstm_type != "":
use_bilstm = False
lstm_channels = n_channels
if self.lstm_type == "bilstm":
use_bilstm = True
lstm_channels = int(n_channels // 2)
self.bilstm = nn.LSTM(n_channels, lstm_channels, 1, batch_first=True, bidirectional=use_bilstm)
lstm_norm_fn_pntr = nn.utils.spectral_norm
self.bilstm = lstm_norm_fn_pntr(self.bilstm, "weight_hh_l0")
if self.lstm_type == "bilstm":
self.bilstm = lstm_norm_fn_pntr(self.bilstm, "weight_hh_l0_reverse")
if self.use_linear:
self.dense = nn.Linear(n_channels, out_dim)
def run_padded_sequence(self, context, lens):
context_embedded = []
for b_ind in range(context.size()[0]): # TODO: speed up
curr_context = context[b_ind : b_ind + 1, :, : lens[b_ind]].clone()
for conv in self.convolutions:
curr_context = self.dropout(F.relu(conv(curr_context)))
context_embedded.append(curr_context[0].transpose(0, 1))
context = nn.utils.rnn.pad_sequence(context_embedded, batch_first=True)
return context
def run_unsorted_inputs(self, fn, context, lens): # pylint: disable=no-self-use
lens_sorted, ids_sorted = torch.sort(lens, descending=True)
unsort_ids = [0] * lens.size(0)
for i in range(len(ids_sorted)): # pylint: disable=consider-using-enumerate
unsort_ids[ids_sorted[i]] = i
lens_sorted = lens_sorted.long().cpu()
context = context[ids_sorted]
context = nn.utils.rnn.pack_padded_sequence(context, lens_sorted, batch_first=True)
context = fn(context)[0]
context = nn.utils.rnn.pad_packed_sequence(context, batch_first=True)[0]
# map back to original indices
context = context[unsort_ids]
return context
def forward(self, context, lens):
if context.size()[0] > 1:
context = self.run_padded_sequence(context, lens)
# to B, D, T
context = context.transpose(1, 2)
else:
for conv in self.convolutions:
context = self.dropout(F.relu(conv(context)))
if self.lstm_type != "":
context = context.transpose(1, 2)
self.bilstm.flatten_parameters()
if lens is not None:
context = self.run_unsorted_inputs(self.bilstm, context, lens)
else:
context = self.bilstm(context)[0]
context = context.transpose(1, 2)
x_hat = context
if self.use_linear:
x_hat = self.dense(context.transpose(1, 2)).transpose(1, 2)
return x_hat
class DepthWiseConv1d(nn.Module):
def __init__(self, in_channels: int, out_channels: int, kernel_size: int, padding: int):
super().__init__()
self.conv = nn.Conv1d(in_channels, out_channels, kernel_size, padding=padding, groups=in_channels)
def forward(self, x: torch.Tensor) -> torch.Tensor:
return self.conv(x)
class PointwiseConv1d(nn.Module):
def __init__(
self,
in_channels: int,
out_channels: int,
stride: int = 1,
padding: int = 0,
bias: bool = True,
):
super().__init__()
self.conv = nn.Conv1d(
in_channels=in_channels,
out_channels=out_channels,
kernel_size=1,
stride=stride,
padding=padding,
bias=bias,
)
def forward(self, x: torch.Tensor) -> torch.Tensor:
return self.conv(x)
class BSConv1d(nn.Module):
"""https://arxiv.org/pdf/2003.13549.pdf"""
def __init__(self, channels_in: int, channels_out: int, kernel_size: int, padding: int):
super().__init__()
self.pointwise = nn.Conv1d(channels_in, channels_out, kernel_size=1)
self.depthwise = nn.Conv1d(
channels_out,
channels_out,
kernel_size=kernel_size,
padding=padding,
groups=channels_out,
)
def forward(self, x: torch.Tensor) -> torch.Tensor:
x1 = self.pointwise(x)
x2 = self.depthwise(x1)
return x2
class BSConv2d(nn.Module):
"""https://arxiv.org/pdf/2003.13549.pdf"""
def __init__(self, channels_in: int, channels_out: int, kernel_size: int, padding: int):
super().__init__()
self.pointwise = nn.Conv2d(channels_in, channels_out, kernel_size=1)
self.depthwise = nn.Conv2d(
channels_out,
channels_out,
kernel_size=kernel_size,
padding=padding,
groups=channels_out,
)
def forward(self, x: torch.Tensor) -> torch.Tensor:
x1 = self.pointwise(x)
x2 = self.depthwise(x1)
return x2
class Conv1dGLU(nn.Module):
"""From DeepVoice 3"""
def __init__(self, d_model: int, kernel_size: int, padding: int, embedding_dim: int):
super().__init__()
self.conv = BSConv1d(d_model, 2 * d_model, kernel_size=kernel_size, padding=padding)
self.embedding_proj = nn.Linear(embedding_dim, d_model)
self.register_buffer("sqrt", torch.sqrt(torch.FloatTensor([0.5])).squeeze(0))
self.softsign = torch.nn.Softsign()
def forward(self, x: torch.Tensor, embeddings: torch.Tensor) -> torch.Tensor:
x = x.permute((0, 2, 1))
residual = x
x = self.conv(x)
splitdim = 1
a, b = x.split(x.size(splitdim) // 2, dim=splitdim)
embeddings = self.embedding_proj(embeddings).unsqueeze(2)
softsign = self.softsign(embeddings)
softsign = softsign.expand_as(a)
a = a + softsign
x = a * torch.sigmoid(b)
x = x + residual
x = x * self.sqrt
x = x.permute((0, 2, 1))
return x
class ConvTransposed(nn.Module):
"""
A 1D convolutional transposed layer for PyTorch.
This layer applies a 1D convolutional transpose operation to its input tensor,
where the number of channels of the input tensor is the same as the number of channels of the output tensor.
Attributes:
in_channels (int): The number of channels in the input tensor.
out_channels (int): The number of channels in the output tensor.
kernel_size (int): The size of the convolutional kernel. Default: 1.
padding (int): The number of padding elements to add to the input tensor. Default: 0.
conv (BSConv1d): The 1D convolutional transpose layer.
"""
def __init__(
self,
in_channels: int,
out_channels: int,
kernel_size: int = 1,
padding: int = 0,
):
super().__init__()
self.conv = BSConv1d(
in_channels,
out_channels,
kernel_size=kernel_size,
padding=padding,
)
def forward(self, x: torch.Tensor) -> torch.Tensor:
x = x.contiguous().transpose(1, 2)
x = self.conv(x)
x = x.contiguous().transpose(1, 2)
return x
class DepthwiseConvModule(nn.Module):
def __init__(self, dim: int, kernel_size: int = 7, expansion: int = 4, lrelu_slope: float = 0.3):
super().__init__()
padding = calc_same_padding(kernel_size)
self.depthwise = nn.Conv1d(
dim,
dim * expansion,
kernel_size=kernel_size,
padding=padding[0],
groups=dim,
)
self.act = nn.LeakyReLU(lrelu_slope)
self.out = nn.Conv1d(dim * expansion, dim, 1, 1, 0)
self.ln = nn.LayerNorm(dim)
def forward(self, x: torch.Tensor) -> torch.Tensor:
x = self.ln(x)
x = x.permute((0, 2, 1))
x = self.depthwise(x)
x = self.act(x)
x = self.out(x)
x = x.permute((0, 2, 1))
return x
class AddCoords(nn.Module):
def __init__(self, rank: int, with_r: bool = False):
super().__init__()
self.rank = rank
self.with_r = with_r
def forward(self, x: torch.Tensor) -> torch.Tensor:
if self.rank == 1:
batch_size_shape, channel_in_shape, dim_x = x.shape # pylint: disable=unused-variable
xx_range = torch.arange(dim_x, dtype=torch.int32)
xx_channel = xx_range[None, None, :]
xx_channel = xx_channel.float() / (dim_x - 1)
xx_channel = xx_channel * 2 - 1
xx_channel = xx_channel.repeat(batch_size_shape, 1, 1)
xx_channel = xx_channel.to(x.device)
out = torch.cat([x, xx_channel], dim=1)
if self.with_r:
rr = torch.sqrt(torch.pow(xx_channel - 0.5, 2))
out = torch.cat([out, rr], dim=1)
elif self.rank == 2:
batch_size_shape, channel_in_shape, dim_y, dim_x = x.shape
xx_ones = torch.ones([1, 1, 1, dim_x], dtype=torch.int32)
yy_ones = torch.ones([1, 1, 1, dim_y], dtype=torch.int32)
xx_range = torch.arange(dim_y, dtype=torch.int32)
yy_range = torch.arange(dim_x, dtype=torch.int32)
xx_range = xx_range[None, None, :, None]
yy_range = yy_range[None, None, :, None]
xx_channel = torch.matmul(xx_range, xx_ones)
yy_channel = torch.matmul(yy_range, yy_ones)
# transpose y
yy_channel = yy_channel.permute(0, 1, 3, 2)
xx_channel = xx_channel.float() / (dim_y - 1)
yy_channel = yy_channel.float() / (dim_x - 1)
xx_channel = xx_channel * 2 - 1
yy_channel = yy_channel * 2 - 1
xx_channel = xx_channel.repeat(batch_size_shape, 1, 1, 1)
yy_channel = yy_channel.repeat(batch_size_shape, 1, 1, 1)
xx_channel = xx_channel.to(x.device)
yy_channel = yy_channel.to(x.device)
out = torch.cat([x, xx_channel, yy_channel], dim=1)
if self.with_r:
rr = torch.sqrt(torch.pow(xx_channel - 0.5, 2) + torch.pow(yy_channel - 0.5, 2))
out = torch.cat([out, rr], dim=1)
elif self.rank == 3:
batch_size_shape, channel_in_shape, dim_z, dim_y, dim_x = x.shape
xx_ones = torch.ones([1, 1, 1, 1, dim_x], dtype=torch.int32)
yy_ones = torch.ones([1, 1, 1, 1, dim_y], dtype=torch.int32)
zz_ones = torch.ones([1, 1, 1, 1, dim_z], dtype=torch.int32)
xy_range = torch.arange(dim_y, dtype=torch.int32)
xy_range = xy_range[None, None, None, :, None]
yz_range = torch.arange(dim_z, dtype=torch.int32)
yz_range = yz_range[None, None, None, :, None]
zx_range = torch.arange(dim_x, dtype=torch.int32)
zx_range = zx_range[None, None, None, :, None]
xy_channel = torch.matmul(xy_range, xx_ones)
xx_channel = torch.cat([xy_channel + i for i in range(dim_z)], dim=2)
yz_channel = torch.matmul(yz_range, yy_ones)
yz_channel = yz_channel.permute(0, 1, 3, 4, 2)
yy_channel = torch.cat([yz_channel + i for i in range(dim_x)], dim=4)
zx_channel = torch.matmul(zx_range, zz_ones)
zx_channel = zx_channel.permute(0, 1, 4, 2, 3)
zz_channel = torch.cat([zx_channel + i for i in range(dim_y)], dim=3)
xx_channel = xx_channel.to(x.device)
yy_channel = yy_channel.to(x.device)
zz_channel = zz_channel.to(x.device)
out = torch.cat([x, xx_channel, yy_channel, zz_channel], dim=1)
if self.with_r:
rr = torch.sqrt(
torch.pow(xx_channel - 0.5, 2) + torch.pow(yy_channel - 0.5, 2) + torch.pow(zz_channel - 0.5, 2)
)
out = torch.cat([out, rr], dim=1)
else:
raise NotImplementedError
return out
class CoordConv1d(nn.modules.conv.Conv1d):
def __init__(
self,
in_channels: int,
out_channels: int,
kernel_size: int,
stride: int = 1,
padding: int = 0,
dilation: int = 1,
groups: int = 1,
bias: bool = True,
with_r: bool = False,
):
super().__init__(
in_channels,
out_channels,
kernel_size,
stride,
padding,
dilation,
groups,
bias,
)
self.rank = 1
self.addcoords = AddCoords(self.rank, with_r)
self.conv = nn.Conv1d(
in_channels + self.rank + int(with_r),
out_channels,
kernel_size,
stride,
padding,
dilation,
groups,
bias,
)
def forward(self, x: torch.Tensor) -> torch.Tensor:
x = self.addcoords(x)
x = self.conv(x)
return x
class CoordConv2d(nn.modules.conv.Conv2d):
def __init__(
self,
in_channels: int,
out_channels: int,
kernel_size: int,
stride: int = 1,
padding: int = 0,
dilation: int = 1,
groups: int = 1,
bias: bool = True,
with_r: bool = False,
):
super().__init__(
in_channels,
out_channels,
kernel_size,
stride,
padding,
dilation,
groups,
bias,
)
self.rank = 2
self.addcoords = AddCoords(self.rank, with_r)
self.conv = nn.Conv2d(
in_channels + self.rank + int(with_r),
out_channels,
kernel_size,
stride,
padding,
dilation,
groups,
bias,
)
def forward(self, x: torch.Tensor) -> torch.Tensor:
x = self.addcoords(x)
x = self.conv(x)
return x
class LVCBlock(torch.nn.Module):
"""the location-variable convolutions"""
def __init__( # pylint: disable=dangerous-default-value
self,
in_channels,
cond_channels,
stride,
dilations=[1, 3, 9, 27],
lReLU_slope=0.2,
conv_kernel_size=3,
cond_hop_length=256,
kpnet_hidden_channels=64,
kpnet_conv_size=3,
kpnet_dropout=0.0,
):
super().__init__()
self.cond_hop_length = cond_hop_length
self.conv_layers = len(dilations)
self.conv_kernel_size = conv_kernel_size
self.kernel_predictor = KernelPredictor(
cond_channels=cond_channels,
conv_in_channels=in_channels,
conv_out_channels=2 * in_channels,
conv_layers=len(dilations),
conv_kernel_size=conv_kernel_size,
kpnet_hidden_channels=kpnet_hidden_channels,
kpnet_conv_size=kpnet_conv_size,
kpnet_dropout=kpnet_dropout,
kpnet_nonlinear_activation_params={"negative_slope": lReLU_slope},
)
self.convt_pre = nn.Sequential(
nn.LeakyReLU(lReLU_slope),
nn.utils.parametrizations.weight_norm(
nn.ConvTranspose1d(
in_channels,
in_channels,
2 * stride,
stride=stride,
padding=stride // 2 + stride % 2,
output_padding=stride % 2,
)
),
)
self.conv_blocks = nn.ModuleList()
for dilation in dilations:
self.conv_blocks.append(
nn.Sequential(
nn.LeakyReLU(lReLU_slope),
nn.utils.parametrizations.weight_norm(
nn.Conv1d(
in_channels,
in_channels,
conv_kernel_size,
padding=dilation * (conv_kernel_size - 1) // 2,
dilation=dilation,
)
),
nn.LeakyReLU(lReLU_slope),
)
)
def forward(self, x, c):
"""forward propagation of the location-variable convolutions.
Args:
x (Tensor): the input sequence (batch, in_channels, in_length)
c (Tensor): the conditioning sequence (batch, cond_channels, cond_length)
Returns:
Tensor: the output sequence (batch, in_channels, in_length)
"""
_, in_channels, _ = x.shape # (B, c_g, L')
x = self.convt_pre(x) # (B, c_g, stride * L')
kernels, bias = self.kernel_predictor(c)
for i, conv in enumerate(self.conv_blocks):
output = conv(x) # (B, c_g, stride * L')
k = kernels[:, i, :, :, :, :] # (B, 2 * c_g, c_g, kernel_size, cond_length)
b = bias[:, i, :, :] # (B, 2 * c_g, cond_length)
output = self.location_variable_convolution(
output, k, b, hop_size=self.cond_hop_length
) # (B, 2 * c_g, stride * L'): LVC
x = x + torch.sigmoid(output[:, :in_channels, :]) * torch.tanh(
output[:, in_channels:, :]
) # (B, c_g, stride * L'): GAU
return x
def location_variable_convolution(self, x, kernel, bias, dilation=1, hop_size=256): # pylint: disable=no-self-use
"""perform location-variable convolution operation on the input sequence (x) using the local convolution kernl.
Time: 414 μs ± 309 ns per loop (mean ± std. dev. of 7 runs, 1000 loops each), test on NVIDIA V100.
Args:
x (Tensor): the input sequence (batch, in_channels, in_length).
kernel (Tensor): the local convolution kernel (batch, in_channel, out_channels, kernel_size, kernel_length)
bias (Tensor): the bias for the local convolution (batch, out_channels, kernel_length)
dilation (int): the dilation of convolution.
hop_size (int): the hop_size of the conditioning sequence.
Returns:
(Tensor): the output sequence after performing local convolution. (batch, out_channels, in_length).
"""
batch, _, in_length = x.shape
batch, _, out_channels, kernel_size, kernel_length = kernel.shape
assert in_length == (kernel_length * hop_size), "length of (x, kernel) is not matched"
padding = dilation * int((kernel_size - 1) / 2)
x = F.pad(x, (padding, padding), "constant", 0) # (batch, in_channels, in_length + 2*padding)
x = x.unfold(2, hop_size + 2 * padding, hop_size) # (batch, in_channels, kernel_length, hop_size + 2*padding)
if hop_size < dilation:
x = F.pad(x, (0, dilation), "constant", 0)
x = x.unfold(
3, dilation, dilation
) # (batch, in_channels, kernel_length, (hop_size + 2*padding)/dilation, dilation)
x = x[:, :, :, :, :hop_size]
x = x.transpose(3, 4) # (batch, in_channels, kernel_length, dilation, (hop_size + 2*padding)/dilation)
x = x.unfold(4, kernel_size, 1) # (batch, in_channels, kernel_length, dilation, _, kernel_size)
o = torch.einsum("bildsk,biokl->bolsd", x, kernel)
o = o.to(memory_format=torch.channels_last_3d)
bias = bias.unsqueeze(-1).unsqueeze(-1).to(memory_format=torch.channels_last_3d)
o = o + bias
o = o.contiguous().view(batch, out_channels, -1)
return o
def remove_weight_norm(self):
self.kernel_predictor.remove_weight_norm()
parametrize.remove_parametrizations(self.convt_pre[1], "weight")
for block in self.conv_blocks:
parametrize.remove_parametrizations(block[1], "weight")
|