Spaces:
Running
Running
File size: 9,202 Bytes
9b2107c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 |
from typing import List, Tuple, Union
import torch
import torch.nn as nn # pylint: disable=consider-using-from-import
import torch.nn.functional as F
from TTS.tts.layers.delightful_tts.conformer import ConformerMultiHeadedSelfAttention
from TTS.tts.layers.delightful_tts.conv_layers import CoordConv1d
from TTS.tts.layers.delightful_tts.networks import STL
def get_mask_from_lengths(lengths: torch.Tensor) -> torch.Tensor:
batch_size = lengths.shape[0]
max_len = torch.max(lengths).item()
ids = torch.arange(0, max_len, device=lengths.device).unsqueeze(0).expand(batch_size, -1)
mask = ids >= lengths.unsqueeze(1).expand(-1, max_len)
return mask
def stride_lens(lens: torch.Tensor, stride: int = 2) -> torch.Tensor:
return torch.ceil(lens / stride).int()
class ReferenceEncoder(nn.Module):
"""
Referance encoder for utterance and phoneme prosody encoders. Reference encoder
made up of convolution and RNN layers.
Args:
num_mels (int): Number of mel frames to produce.
ref_enc_filters (list[int]): List of channel sizes for encoder layers.
ref_enc_size (int): Size of the kernel for the conv layers.
ref_enc_strides (List[int]): List of strides to use for conv layers.
ref_enc_gru_size (int): Number of hidden features for the gated recurrent unit.
Inputs: inputs, mask
- **inputs** (batch, dim, time): Tensor containing mel vector
- **lengths** (batch): Tensor containing the mel lengths.
Returns:
- **outputs** (batch, time, dim): Tensor produced by Reference Encoder.
"""
def __init__(
self,
num_mels: int,
ref_enc_filters: List[Union[int, int, int, int, int, int]],
ref_enc_size: int,
ref_enc_strides: List[Union[int, int, int, int, int]],
ref_enc_gru_size: int,
):
super().__init__()
n_mel_channels = num_mels
self.n_mel_channels = n_mel_channels
K = len(ref_enc_filters)
filters = [self.n_mel_channels] + ref_enc_filters
strides = [1] + ref_enc_strides
# Use CoordConv at the first layer to better preserve positional information: https://arxiv.org/pdf/1811.02122.pdf
convs = [
CoordConv1d(
in_channels=filters[0],
out_channels=filters[0 + 1],
kernel_size=ref_enc_size,
stride=strides[0],
padding=ref_enc_size // 2,
with_r=True,
)
]
convs2 = [
nn.Conv1d(
in_channels=filters[i],
out_channels=filters[i + 1],
kernel_size=ref_enc_size,
stride=strides[i],
padding=ref_enc_size // 2,
)
for i in range(1, K)
]
convs.extend(convs2)
self.convs = nn.ModuleList(convs)
self.norms = nn.ModuleList([nn.InstanceNorm1d(num_features=ref_enc_filters[i], affine=True) for i in range(K)])
self.gru = nn.GRU(
input_size=ref_enc_filters[-1],
hidden_size=ref_enc_gru_size,
batch_first=True,
)
def forward(self, x: torch.Tensor, mel_lens: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
"""
inputs --- [N, n_mels, timesteps]
outputs --- [N, E//2]
"""
mel_masks = get_mask_from_lengths(mel_lens).unsqueeze(1)
x = x.masked_fill(mel_masks, 0)
for conv, norm in zip(self.convs, self.norms):
x = conv(x)
x = F.leaky_relu(x, 0.3) # [N, 128, Ty//2^K, n_mels//2^K]
x = norm(x)
for _ in range(2):
mel_lens = stride_lens(mel_lens)
mel_masks = get_mask_from_lengths(mel_lens)
x = x.masked_fill(mel_masks.unsqueeze(1), 0)
x = x.permute((0, 2, 1))
x = torch.nn.utils.rnn.pack_padded_sequence(x, mel_lens.cpu().int(), batch_first=True, enforce_sorted=False)
self.gru.flatten_parameters()
x, memory = self.gru(x) # memory --- [N, Ty, E//2], out --- [1, N, E//2]
x, _ = torch.nn.utils.rnn.pad_packed_sequence(x, batch_first=True)
return x, memory, mel_masks
def calculate_channels( # pylint: disable=no-self-use
self, L: int, kernel_size: int, stride: int, pad: int, n_convs: int
) -> int:
for _ in range(n_convs):
L = (L - kernel_size + 2 * pad) // stride + 1
return L
class UtteranceLevelProsodyEncoder(nn.Module):
def __init__(
self,
num_mels: int,
ref_enc_filters: List[Union[int, int, int, int, int, int]],
ref_enc_size: int,
ref_enc_strides: List[Union[int, int, int, int, int]],
ref_enc_gru_size: int,
dropout: float,
n_hidden: int,
bottleneck_size_u: int,
token_num: int,
):
"""
Encoder to extract prosody from utterance. it is made up of a reference encoder
with a couple of linear layers and style token layer with dropout.
Args:
num_mels (int): Number of mel frames to produce.
ref_enc_filters (list[int]): List of channel sizes for ref encoder layers.
ref_enc_size (int): Size of the kernel for the ref encoder conv layers.
ref_enc_strides (List[int]): List of strides to use for teh ref encoder conv layers.
ref_enc_gru_size (int): Number of hidden features for the gated recurrent unit.
dropout (float): Probability of dropout.
n_hidden (int): Size of hidden layers.
bottleneck_size_u (int): Size of the bottle neck layer.
Inputs: inputs, mask
- **inputs** (batch, dim, time): Tensor containing mel vector
- **lengths** (batch): Tensor containing the mel lengths.
Returns:
- **outputs** (batch, 1, dim): Tensor produced by Utterance Level Prosody Encoder.
"""
super().__init__()
self.E = n_hidden
self.d_q = self.d_k = n_hidden
bottleneck_size = bottleneck_size_u
self.encoder = ReferenceEncoder(
ref_enc_filters=ref_enc_filters,
ref_enc_gru_size=ref_enc_gru_size,
ref_enc_size=ref_enc_size,
ref_enc_strides=ref_enc_strides,
num_mels=num_mels,
)
self.encoder_prj = nn.Linear(ref_enc_gru_size, self.E // 2)
self.stl = STL(n_hidden=n_hidden, token_num=token_num)
self.encoder_bottleneck = nn.Linear(self.E, bottleneck_size)
self.dropout = nn.Dropout(dropout)
def forward(self, mels: torch.Tensor, mel_lens: torch.Tensor) -> torch.Tensor:
"""
Shapes:
mels: :math: `[B, C, T]`
mel_lens: :math: `[B]`
out --- [N, seq_len, E]
"""
_, embedded_prosody, _ = self.encoder(mels, mel_lens)
# Bottleneck
embedded_prosody = self.encoder_prj(embedded_prosody)
# Style Token
out = self.encoder_bottleneck(self.stl(embedded_prosody))
out = self.dropout(out)
out = out.view((-1, 1, out.shape[3]))
return out
class PhonemeLevelProsodyEncoder(nn.Module):
def __init__(
self,
num_mels: int,
ref_enc_filters: List[Union[int, int, int, int, int, int]],
ref_enc_size: int,
ref_enc_strides: List[Union[int, int, int, int, int]],
ref_enc_gru_size: int,
dropout: float,
n_hidden: int,
n_heads: int,
bottleneck_size_p: int,
):
super().__init__()
self.E = n_hidden
self.d_q = self.d_k = n_hidden
bottleneck_size = bottleneck_size_p
self.encoder = ReferenceEncoder(
ref_enc_filters=ref_enc_filters,
ref_enc_gru_size=ref_enc_gru_size,
ref_enc_size=ref_enc_size,
ref_enc_strides=ref_enc_strides,
num_mels=num_mels,
)
self.encoder_prj = nn.Linear(ref_enc_gru_size, n_hidden)
self.attention = ConformerMultiHeadedSelfAttention(
d_model=n_hidden,
num_heads=n_heads,
dropout_p=dropout,
)
self.encoder_bottleneck = nn.Linear(n_hidden, bottleneck_size)
def forward(
self,
x: torch.Tensor,
src_mask: torch.Tensor,
mels: torch.Tensor,
mel_lens: torch.Tensor,
encoding: torch.Tensor,
) -> torch.Tensor:
"""
x --- [N, seq_len, encoder_embedding_dim]
mels --- [N, Ty/r, n_mels*r], r=1
out --- [N, seq_len, bottleneck_size]
attn --- [N, seq_len, ref_len], Ty/r = ref_len
"""
embedded_prosody, _, mel_masks = self.encoder(mels, mel_lens)
# Bottleneck
embedded_prosody = self.encoder_prj(embedded_prosody)
attn_mask = mel_masks.view((mel_masks.shape[0], 1, 1, -1))
x, _ = self.attention(
query=x,
key=embedded_prosody,
value=embedded_prosody,
mask=attn_mask,
encoding=encoding,
)
x = self.encoder_bottleneck(x)
x = x.masked_fill(src_mask.unsqueeze(-1), 0.0)
return x
|