File size: 8,063 Bytes
9b2107c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
import math
from typing import Tuple

import numpy as np
import torch
import torch.nn as nn  # pylint: disable=consider-using-from-import
import torch.nn.functional as F

from TTS.tts.layers.delightful_tts.conv_layers import ConvNorm


def initialize_embeddings(shape: Tuple[int]) -> torch.Tensor:
    assert len(shape) == 2, "Can only initialize 2-D embedding matrices ..."
    # Kaiming initialization
    return torch.randn(shape) * np.sqrt(2 / shape[1])


def positional_encoding(d_model: int, length: int, device: torch.device) -> torch.Tensor:
    pe = torch.zeros(length, d_model, device=device)
    position = torch.arange(0, length, dtype=torch.float, device=device).unsqueeze(1)
    div_term = torch.exp(torch.arange(0, d_model, 2, device=device).float() * -(math.log(10000.0) / d_model))
    pe[:, 0::2] = torch.sin(position * div_term)
    pe[:, 1::2] = torch.cos(position * div_term)
    pe = pe.unsqueeze(0)
    return pe


class BottleneckLayer(nn.Module):
    """
    Bottleneck layer for reducing the dimensionality of a tensor.

    Args:
        in_dim: The number of input dimensions.
        reduction_factor: The factor by which to reduce the number of dimensions.
        norm: The normalization method to use. Can be "weightnorm" or "instancenorm".
        non_linearity: The non-linearity to use. Can be "relu" or "leakyrelu".
        kernel_size: The size of the convolutional kernel.
        use_partial_padding: Whether to use partial padding with the convolutional kernel.

    Shape:
        - Input: :math:`[N, in_dim]` where `N` is the batch size and `in_dim` is the number of input dimensions.

        - Output: :math:`[N, out_dim]` where `out_dim` is the number of output dimensions.
    """

    def __init__(
        self,
        in_dim,
        reduction_factor,
        norm="weightnorm",
        non_linearity="relu",
        kernel_size=3,
        use_partial_padding=False,  # pylint: disable=unused-argument
    ):
        super(BottleneckLayer, self).__init__()  # pylint: disable=super-with-arguments

        self.reduction_factor = reduction_factor
        reduced_dim = int(in_dim / reduction_factor)
        self.out_dim = reduced_dim
        if self.reduction_factor > 1:
            fn = ConvNorm(in_dim, reduced_dim, kernel_size=kernel_size, use_weight_norm=(norm == "weightnorm"))
            if norm == "instancenorm":
                fn = nn.Sequential(fn, nn.InstanceNorm1d(reduced_dim, affine=True))

            self.projection_fn = fn
            self.non_linearity = nn.ReLU()
            if non_linearity == "leakyrelu":
                self.non_linearity = nn.LeakyReLU()

    def forward(self, x):
        if self.reduction_factor > 1:
            x = self.projection_fn(x)
            x = self.non_linearity(x)
        return x


class GLUActivation(nn.Module):
    """Class that implements the Gated Linear Unit (GLU) activation function.

    The GLU activation function is a variant of the Leaky ReLU activation function,
    where the output of the activation function is gated by an input tensor.

    """

    def __init__(self, slope: float):
        super().__init__()
        self.lrelu = nn.LeakyReLU(slope)

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        out, gate = x.chunk(2, dim=1)
        x = out * self.lrelu(gate)
        return x


class StyleEmbedAttention(nn.Module):
    def __init__(self, query_dim: int, key_dim: int, num_units: int, num_heads: int):
        super().__init__()
        self.num_units = num_units
        self.num_heads = num_heads
        self.key_dim = key_dim

        self.W_query = nn.Linear(in_features=query_dim, out_features=num_units, bias=False)
        self.W_key = nn.Linear(in_features=key_dim, out_features=num_units, bias=False)
        self.W_value = nn.Linear(in_features=key_dim, out_features=num_units, bias=False)

    def forward(self, query: torch.Tensor, key_soft: torch.Tensor) -> torch.Tensor:
        values = self.W_value(key_soft)
        split_size = self.num_units // self.num_heads
        values = torch.stack(torch.split(values, split_size, dim=2), dim=0)

        out_soft = scores_soft = None
        querys = self.W_query(query)  # [N, T_q, num_units]
        keys = self.W_key(key_soft)  # [N, T_k, num_units]

        # [h, N, T_q, num_units/h]
        querys = torch.stack(torch.split(querys, split_size, dim=2), dim=0)
        # [h, N, T_k, num_units/h]
        keys = torch.stack(torch.split(keys, split_size, dim=2), dim=0)
        # [h, N, T_k, num_units/h]

        # score = softmax(QK^T / (d_k ** 0.5))
        scores_soft = torch.matmul(querys, keys.transpose(2, 3))  # [h, N, T_q, T_k]
        scores_soft = scores_soft / (self.key_dim**0.5)
        scores_soft = F.softmax(scores_soft, dim=3)

        # out = score * V
        # [h, N, T_q, num_units/h]
        out_soft = torch.matmul(scores_soft, values)
        out_soft = torch.cat(torch.split(out_soft, 1, dim=0), dim=3).squeeze(0)  # [N, T_q, num_units]

        return out_soft  # , scores_soft


class EmbeddingPadded(nn.Module):
    def __init__(self, num_embeddings: int, embedding_dim: int, padding_idx: int):
        super().__init__()
        padding_mult = torch.ones((num_embeddings, 1), dtype=torch.int64)
        padding_mult[padding_idx] = 0
        self.register_buffer("padding_mult", padding_mult)
        self.embeddings = nn.parameter.Parameter(initialize_embeddings((num_embeddings, embedding_dim)))

    def forward(self, idx: torch.Tensor) -> torch.Tensor:
        embeddings_zeroed = self.embeddings * self.padding_mult
        x = F.embedding(idx, embeddings_zeroed)
        return x


class EmbeddingProjBlock(nn.Module):
    def __init__(self, embedding_dim: int):
        super().__init__()
        self.layers = nn.ModuleList(
            [
                nn.Linear(embedding_dim, embedding_dim),
                nn.LeakyReLU(0.3),
                nn.Linear(embedding_dim, embedding_dim),
                nn.LeakyReLU(0.3),
            ]
        )

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        res = x
        for layer in self.layers:
            x = layer(x)
        x = x + res
        return x


class LinearNorm(nn.Module):
    def __init__(self, in_features: int, out_features: int, bias: bool = False):
        super().__init__()
        self.linear = nn.Linear(in_features, out_features, bias)

        nn.init.xavier_uniform_(self.linear.weight)
        if bias:
            nn.init.constant_(self.linear.bias, 0.0)

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        x = self.linear(x)
        return x


class STL(nn.Module):
    """
    A PyTorch module for the Style Token Layer (STL) as described in
    "A Style-Based Generator Architecture for Generative Adversarial Networks"
    (https://arxiv.org/abs/1812.04948)

    The STL applies a multi-headed attention mechanism over the learned style tokens,
    using the text input as the query and the style tokens as the keys and values.
    The output of the attention mechanism is used as the text's style embedding.

    Args:
        token_num (int): The number of style tokens.
        n_hidden (int): Number of hidden dimensions.
    """

    def __init__(self, n_hidden: int, token_num: int):
        super(STL, self).__init__()  # pylint: disable=super-with-arguments

        num_heads = 1
        E = n_hidden
        self.token_num = token_num
        self.embed = nn.Parameter(torch.FloatTensor(self.token_num, E // num_heads))
        d_q = E // 2
        d_k = E // num_heads
        self.attention = StyleEmbedAttention(query_dim=d_q, key_dim=d_k, num_units=E, num_heads=num_heads)

        torch.nn.init.normal_(self.embed, mean=0, std=0.5)

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        N = x.size(0)
        query = x.unsqueeze(1)  # [N, 1, E//2]

        keys_soft = torch.tanh(self.embed).unsqueeze(0).expand(N, -1, -1)  # [N, token_num, E // num_heads]

        # Weighted sum
        emotion_embed_soft = self.attention(query, keys_soft)

        return emotion_embed_soft