Spaces:
Running
Running
File size: 35,611 Bytes
9b2107c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 |
import math
import numpy as np
import torch
from coqpit import Coqpit
from torch import nn
from torch.nn import functional
from TTS.tts.utils.helpers import sequence_mask
from TTS.tts.utils.ssim import SSIMLoss as _SSIMLoss
from TTS.utils.audio.torch_transforms import TorchSTFT
# pylint: disable=abstract-method
# relates https://github.com/pytorch/pytorch/issues/42305
class L1LossMasked(nn.Module):
def __init__(self, seq_len_norm):
super().__init__()
self.seq_len_norm = seq_len_norm
def forward(self, x, target, length):
"""
Args:
x: A Variable containing a FloatTensor of size
(batch, max_len, dim) which contains the
unnormalized probability for each class.
target: A Variable containing a LongTensor of size
(batch, max_len, dim) which contains the index of the true
class for each corresponding step.
length: A Variable containing a LongTensor of size (batch,)
which contains the length of each data in a batch.
Shapes:
x: B x T X D
target: B x T x D
length: B
Returns:
loss: An average loss value in range [0, 1] masked by the length.
"""
# mask: (batch, max_len, 1)
target.requires_grad = False
mask = sequence_mask(sequence_length=length, max_len=target.size(1)).unsqueeze(2).float()
if self.seq_len_norm:
norm_w = mask / mask.sum(dim=1, keepdim=True)
out_weights = norm_w.div(target.shape[0] * target.shape[2])
mask = mask.expand_as(x)
loss = functional.l1_loss(x * mask, target * mask, reduction="none")
loss = loss.mul(out_weights.to(loss.device)).sum()
else:
mask = mask.expand_as(x)
loss = functional.l1_loss(x * mask, target * mask, reduction="sum")
loss = loss / mask.sum()
return loss
class MSELossMasked(nn.Module):
def __init__(self, seq_len_norm):
super().__init__()
self.seq_len_norm = seq_len_norm
def forward(self, x, target, length):
"""
Args:
x: A Variable containing a FloatTensor of size
(batch, max_len, dim) which contains the
unnormalized probability for each class.
target: A Variable containing a LongTensor of size
(batch, max_len, dim) which contains the index of the true
class for each corresponding step.
length: A Variable containing a LongTensor of size (batch,)
which contains the length of each data in a batch.
Shapes:
- x: :math:`[B, T, D]`
- target: :math:`[B, T, D]`
- length: :math:`B`
Returns:
loss: An average loss value in range [0, 1] masked by the length.
"""
# mask: (batch, max_len, 1)
target.requires_grad = False
mask = sequence_mask(sequence_length=length, max_len=target.size(1)).unsqueeze(2).float()
if self.seq_len_norm:
norm_w = mask / mask.sum(dim=1, keepdim=True)
out_weights = norm_w.div(target.shape[0] * target.shape[2])
mask = mask.expand_as(x)
loss = functional.mse_loss(x * mask, target * mask, reduction="none")
loss = loss.mul(out_weights.to(loss.device)).sum()
else:
mask = mask.expand_as(x)
loss = functional.mse_loss(x * mask, target * mask, reduction="sum")
loss = loss / mask.sum()
return loss
def sample_wise_min_max(x: torch.Tensor, mask: torch.Tensor) -> torch.Tensor:
"""Min-Max normalize tensor through first dimension
Shapes:
- x: :math:`[B, D1, D2]`
- m: :math:`[B, D1, 1]`
"""
maximum = torch.amax(x.masked_fill(~mask, 0), dim=(1, 2), keepdim=True)
minimum = torch.amin(x.masked_fill(~mask, np.inf), dim=(1, 2), keepdim=True)
return (x - minimum) / (maximum - minimum + 1e-8)
class SSIMLoss(torch.nn.Module):
"""SSIM loss as (1 - SSIM)
SSIM is explained here https://en.wikipedia.org/wiki/Structural_similarity
"""
def __init__(self):
super().__init__()
self.loss_func = _SSIMLoss()
def forward(self, y_hat, y, length):
"""
Args:
y_hat (tensor): model prediction values.
y (tensor): target values.
length (tensor): length of each sample in a batch for masking.
Shapes:
y_hat: B x T X D
y: B x T x D
length: B
Returns:
loss: An average loss value in range [0, 1] masked by the length.
"""
mask = sequence_mask(sequence_length=length, max_len=y.size(1)).unsqueeze(2)
y_norm = sample_wise_min_max(y, mask)
y_hat_norm = sample_wise_min_max(y_hat, mask)
ssim_loss = self.loss_func((y_norm * mask).unsqueeze(1), (y_hat_norm * mask).unsqueeze(1))
if ssim_loss.item() > 1.0:
print(f" > SSIM loss is out-of-range {ssim_loss.item()}, setting it 1.0")
ssim_loss = torch.tensor(1.0, device=ssim_loss.device)
if ssim_loss.item() < 0.0:
print(f" > SSIM loss is out-of-range {ssim_loss.item()}, setting it 0.0")
ssim_loss = torch.tensor(0.0, device=ssim_loss.device)
return ssim_loss
class AttentionEntropyLoss(nn.Module):
# pylint: disable=R0201
def forward(self, align):
"""
Forces attention to be more decisive by penalizing
soft attention weights
"""
entropy = torch.distributions.Categorical(probs=align).entropy()
loss = (entropy / np.log(align.shape[1])).mean()
return loss
class BCELossMasked(nn.Module):
"""BCE loss with masking.
Used mainly for stopnet in autoregressive models.
Args:
pos_weight (float): weight for positive samples. If set < 1, penalize early stopping. Defaults to None.
"""
def __init__(self, pos_weight: float = None):
super().__init__()
self.register_buffer("pos_weight", torch.tensor([pos_weight]))
def forward(self, x, target, length):
"""
Args:
x: A Variable containing a FloatTensor of size
(batch, max_len) which contains the
unnormalized probability for each class.
target: A Variable containing a LongTensor of size
(batch, max_len) which contains the index of the true
class for each corresponding step.
length: A Variable containing a LongTensor of size (batch,)
which contains the length of each data in a batch.
Shapes:
x: B x T
target: B x T
length: B
Returns:
loss: An average loss value in range [0, 1] masked by the length.
"""
target.requires_grad = False
if length is not None:
# mask: (batch, max_len, 1)
mask = sequence_mask(sequence_length=length, max_len=target.size(1))
num_items = mask.sum()
loss = functional.binary_cross_entropy_with_logits(
x.masked_select(mask),
target.masked_select(mask),
pos_weight=self.pos_weight.to(x.device),
reduction="sum",
)
else:
loss = functional.binary_cross_entropy_with_logits(
x, target, pos_weight=self.pos_weight.to(x.device), reduction="sum"
)
num_items = torch.numel(x)
loss = loss / num_items
return loss
class DifferentialSpectralLoss(nn.Module):
"""Differential Spectral Loss
https://arxiv.org/ftp/arxiv/papers/1909/1909.10302.pdf"""
def __init__(self, loss_func):
super().__init__()
self.loss_func = loss_func
def forward(self, x, target, length=None):
"""
Shapes:
x: B x T
target: B x T
length: B
Returns:
loss: An average loss value in range [0, 1] masked by the length.
"""
x_diff = x[:, 1:] - x[:, :-1]
target_diff = target[:, 1:] - target[:, :-1]
if length is None:
return self.loss_func(x_diff, target_diff)
return self.loss_func(x_diff, target_diff, length - 1)
class GuidedAttentionLoss(torch.nn.Module):
def __init__(self, sigma=0.4):
super().__init__()
self.sigma = sigma
def _make_ga_masks(self, ilens, olens):
B = len(ilens)
max_ilen = max(ilens)
max_olen = max(olens)
ga_masks = torch.zeros((B, max_olen, max_ilen))
for idx, (ilen, olen) in enumerate(zip(ilens, olens)):
ga_masks[idx, :olen, :ilen] = self._make_ga_mask(ilen, olen, self.sigma)
return ga_masks
def forward(self, att_ws, ilens, olens):
ga_masks = self._make_ga_masks(ilens, olens).to(att_ws.device)
seq_masks = self._make_masks(ilens, olens).to(att_ws.device)
losses = ga_masks * att_ws
loss = torch.mean(losses.masked_select(seq_masks))
return loss
@staticmethod
def _make_ga_mask(ilen, olen, sigma):
grid_x, grid_y = torch.meshgrid(torch.arange(olen).to(olen), torch.arange(ilen).to(ilen))
grid_x, grid_y = grid_x.float(), grid_y.float()
return 1.0 - torch.exp(-((grid_y / ilen - grid_x / olen) ** 2) / (2 * (sigma**2)))
@staticmethod
def _make_masks(ilens, olens):
in_masks = sequence_mask(ilens)
out_masks = sequence_mask(olens)
return out_masks.unsqueeze(-1) & in_masks.unsqueeze(-2)
class Huber(nn.Module):
# pylint: disable=R0201
def forward(self, x, y, length=None):
"""
Shapes:
x: B x T
y: B x T
length: B
"""
mask = sequence_mask(sequence_length=length, max_len=y.size(1)).unsqueeze(2).float()
return torch.nn.functional.smooth_l1_loss(x * mask, y * mask, reduction="sum") / mask.sum()
class ForwardSumLoss(nn.Module):
def __init__(self, blank_logprob=-1):
super().__init__()
self.log_softmax = torch.nn.LogSoftmax(dim=3)
self.ctc_loss = torch.nn.CTCLoss(zero_infinity=True)
self.blank_logprob = blank_logprob
def forward(self, attn_logprob, in_lens, out_lens):
key_lens = in_lens
query_lens = out_lens
attn_logprob_padded = torch.nn.functional.pad(input=attn_logprob, pad=(1, 0), value=self.blank_logprob)
total_loss = 0.0
for bid in range(attn_logprob.shape[0]):
target_seq = torch.arange(1, key_lens[bid] + 1).unsqueeze(0)
curr_logprob = attn_logprob_padded[bid].permute(1, 0, 2)[: query_lens[bid], :, : key_lens[bid] + 1]
curr_logprob = self.log_softmax(curr_logprob[None])[0]
loss = self.ctc_loss(
curr_logprob,
target_seq,
input_lengths=query_lens[bid : bid + 1],
target_lengths=key_lens[bid : bid + 1],
)
total_loss = total_loss + loss
total_loss = total_loss / attn_logprob.shape[0]
return total_loss
########################
# MODEL LOSS LAYERS
########################
class TacotronLoss(torch.nn.Module):
"""Collection of Tacotron set-up based on provided config."""
def __init__(self, c, ga_sigma=0.4):
super().__init__()
self.stopnet_pos_weight = c.stopnet_pos_weight
self.use_capacitron_vae = c.use_capacitron_vae
if self.use_capacitron_vae:
self.capacitron_capacity = c.capacitron_vae.capacitron_capacity
self.capacitron_vae_loss_alpha = c.capacitron_vae.capacitron_VAE_loss_alpha
self.ga_alpha = c.ga_alpha
self.decoder_diff_spec_alpha = c.decoder_diff_spec_alpha
self.postnet_diff_spec_alpha = c.postnet_diff_spec_alpha
self.decoder_alpha = c.decoder_loss_alpha
self.postnet_alpha = c.postnet_loss_alpha
self.decoder_ssim_alpha = c.decoder_ssim_alpha
self.postnet_ssim_alpha = c.postnet_ssim_alpha
self.config = c
# postnet and decoder loss
if c.loss_masking:
self.criterion = L1LossMasked(c.seq_len_norm) if c.model in ["Tacotron"] else MSELossMasked(c.seq_len_norm)
else:
self.criterion = nn.L1Loss() if c.model in ["Tacotron"] else nn.MSELoss()
# guided attention loss
if c.ga_alpha > 0:
self.criterion_ga = GuidedAttentionLoss(sigma=ga_sigma)
# differential spectral loss
if c.postnet_diff_spec_alpha > 0 or c.decoder_diff_spec_alpha > 0:
self.criterion_diff_spec = DifferentialSpectralLoss(loss_func=self.criterion)
# ssim loss
if c.postnet_ssim_alpha > 0 or c.decoder_ssim_alpha > 0:
self.criterion_ssim = SSIMLoss()
# stopnet loss
# pylint: disable=not-callable
self.criterion_st = BCELossMasked(pos_weight=torch.tensor(self.stopnet_pos_weight)) if c.stopnet else None
# For dev pruposes only
self.criterion_capacitron_reconstruction_loss = nn.L1Loss(reduction="sum")
def forward(
self,
postnet_output,
decoder_output,
mel_input,
linear_input,
stopnet_output,
stopnet_target,
stop_target_length,
capacitron_vae_outputs,
output_lens,
decoder_b_output,
alignments,
alignment_lens,
alignments_backwards,
input_lens,
):
# decoder outputs linear or mel spectrograms for Tacotron and Tacotron2
# the target should be set acccordingly
postnet_target = linear_input if self.config.model.lower() in ["tacotron"] else mel_input
return_dict = {}
# remove lengths if no masking is applied
if not self.config.loss_masking:
output_lens = None
# decoder and postnet losses
if self.config.loss_masking:
if self.decoder_alpha > 0:
decoder_loss = self.criterion(decoder_output, mel_input, output_lens)
if self.postnet_alpha > 0:
postnet_loss = self.criterion(postnet_output, postnet_target, output_lens)
else:
if self.decoder_alpha > 0:
decoder_loss = self.criterion(decoder_output, mel_input)
if self.postnet_alpha > 0:
postnet_loss = self.criterion(postnet_output, postnet_target)
loss = self.decoder_alpha * decoder_loss + self.postnet_alpha * postnet_loss
return_dict["decoder_loss"] = decoder_loss
return_dict["postnet_loss"] = postnet_loss
if self.use_capacitron_vae:
# extract capacitron vae infos
posterior_distribution, prior_distribution, beta = capacitron_vae_outputs
# KL divergence term between the posterior and the prior
kl_term = torch.mean(torch.distributions.kl_divergence(posterior_distribution, prior_distribution))
# Limit the mutual information between the data and latent space by the variational capacity limit
kl_capacity = kl_term - self.capacitron_capacity
# pass beta through softplus to keep it positive
beta = torch.nn.functional.softplus(beta)[0]
# This is the term going to the main ADAM optimiser, we detach beta because
# beta is optimised by a separate, SGD optimiser below
capacitron_vae_loss = beta.detach() * kl_capacity
# normalize the capacitron_vae_loss as in L1Loss or MSELoss.
# After this, both the standard loss and capacitron_vae_loss will be in the same scale.
# For this reason we don't need use L1Loss and MSELoss in "sum" reduction mode.
# Note: the batch is not considered because the L1Loss was calculated in "sum" mode
# divided by the batch size, So not dividing the capacitron_vae_loss by B is legitimate.
# get B T D dimension from input
B, T, D = mel_input.size()
# normalize
if self.config.loss_masking:
# if mask loss get T using the mask
T = output_lens.sum() / B
# Only for dev purposes to be able to compare the reconstruction loss with the values in the
# original Capacitron paper
return_dict["capaciton_reconstruction_loss"] = (
self.criterion_capacitron_reconstruction_loss(decoder_output, mel_input) / decoder_output.size(0)
) + kl_capacity
capacitron_vae_loss = capacitron_vae_loss / (T * D)
capacitron_vae_loss = capacitron_vae_loss * self.capacitron_vae_loss_alpha
# This is the term to purely optimise beta and to pass into the SGD optimizer
beta_loss = torch.negative(beta) * kl_capacity.detach()
loss += capacitron_vae_loss
return_dict["capacitron_vae_loss"] = capacitron_vae_loss
return_dict["capacitron_vae_beta_loss"] = beta_loss
return_dict["capacitron_vae_kl_term"] = kl_term
return_dict["capacitron_beta"] = beta
stop_loss = (
self.criterion_st(stopnet_output, stopnet_target, stop_target_length)
if self.config.stopnet
else torch.zeros(1)
)
loss += stop_loss
return_dict["stopnet_loss"] = stop_loss
# backward decoder loss (if enabled)
if self.config.bidirectional_decoder:
if self.config.loss_masking:
decoder_b_loss = self.criterion(torch.flip(decoder_b_output, dims=(1,)), mel_input, output_lens)
else:
decoder_b_loss = self.criterion(torch.flip(decoder_b_output, dims=(1,)), mel_input)
decoder_c_loss = torch.nn.functional.l1_loss(torch.flip(decoder_b_output, dims=(1,)), decoder_output)
loss += self.decoder_alpha * (decoder_b_loss + decoder_c_loss)
return_dict["decoder_b_loss"] = decoder_b_loss
return_dict["decoder_c_loss"] = decoder_c_loss
# double decoder consistency loss (if enabled)
if self.config.double_decoder_consistency:
if self.config.loss_masking:
decoder_b_loss = self.criterion(decoder_b_output, mel_input, output_lens)
else:
decoder_b_loss = self.criterion(decoder_b_output, mel_input)
# decoder_c_loss = torch.nn.functional.l1_loss(decoder_b_output, decoder_output)
attention_c_loss = torch.nn.functional.l1_loss(alignments, alignments_backwards)
loss += self.decoder_alpha * (decoder_b_loss + attention_c_loss)
return_dict["decoder_coarse_loss"] = decoder_b_loss
return_dict["decoder_ddc_loss"] = attention_c_loss
# guided attention loss (if enabled)
if self.config.ga_alpha > 0:
ga_loss = self.criterion_ga(alignments, input_lens, alignment_lens)
loss += ga_loss * self.ga_alpha
return_dict["ga_loss"] = ga_loss
# decoder differential spectral loss
if self.config.decoder_diff_spec_alpha > 0:
decoder_diff_spec_loss = self.criterion_diff_spec(decoder_output, mel_input, output_lens)
loss += decoder_diff_spec_loss * self.decoder_diff_spec_alpha
return_dict["decoder_diff_spec_loss"] = decoder_diff_spec_loss
# postnet differential spectral loss
if self.config.postnet_diff_spec_alpha > 0:
postnet_diff_spec_loss = self.criterion_diff_spec(postnet_output, postnet_target, output_lens)
loss += postnet_diff_spec_loss * self.postnet_diff_spec_alpha
return_dict["postnet_diff_spec_loss"] = postnet_diff_spec_loss
# decoder ssim loss
if self.config.decoder_ssim_alpha > 0:
decoder_ssim_loss = self.criterion_ssim(decoder_output, mel_input, output_lens)
loss += decoder_ssim_loss * self.postnet_ssim_alpha
return_dict["decoder_ssim_loss"] = decoder_ssim_loss
# postnet ssim loss
if self.config.postnet_ssim_alpha > 0:
postnet_ssim_loss = self.criterion_ssim(postnet_output, postnet_target, output_lens)
loss += postnet_ssim_loss * self.postnet_ssim_alpha
return_dict["postnet_ssim_loss"] = postnet_ssim_loss
return_dict["loss"] = loss
return return_dict
class GlowTTSLoss(torch.nn.Module):
def __init__(self):
super().__init__()
self.constant_factor = 0.5 * math.log(2 * math.pi)
def forward(self, z, means, scales, log_det, y_lengths, o_dur_log, o_attn_dur, x_lengths):
return_dict = {}
# flow loss - neg log likelihood
pz = torch.sum(scales) + 0.5 * torch.sum(torch.exp(-2 * scales) * (z - means) ** 2)
log_mle = self.constant_factor + (pz - torch.sum(log_det)) / (torch.sum(y_lengths) * z.shape[2])
# duration loss - MSE
loss_dur = torch.sum((o_dur_log - o_attn_dur) ** 2) / torch.sum(x_lengths)
# duration loss - huber loss
# loss_dur = torch.nn.functional.smooth_l1_loss(o_dur_log, o_attn_dur, reduction="sum") / torch.sum(x_lengths)
return_dict["loss"] = log_mle + loss_dur
return_dict["log_mle"] = log_mle
return_dict["loss_dur"] = loss_dur
# check if any loss is NaN
for key, loss in return_dict.items():
if torch.isnan(loss):
raise RuntimeError(f" [!] NaN loss with {key}.")
return return_dict
def mse_loss_custom(x, y):
"""MSE loss using the torch back-end without reduction.
It uses less VRAM than the raw code"""
expanded_x, expanded_y = torch.broadcast_tensors(x, y)
return torch._C._nn.mse_loss(expanded_x, expanded_y, 0) # pylint: disable=protected-access, c-extension-no-member
class MDNLoss(nn.Module):
"""Mixture of Density Network Loss as described in https://arxiv.org/pdf/2003.01950.pdf."""
def forward(self, logp, text_lengths, mel_lengths): # pylint: disable=no-self-use
"""
Shapes:
mu: [B, D, T]
log_sigma: [B, D, T]
mel_spec: [B, D, T]
"""
B, T_seq, T_mel = logp.shape
log_alpha = logp.new_ones(B, T_seq, T_mel) * (-1e4)
log_alpha[:, 0, 0] = logp[:, 0, 0]
for t in range(1, T_mel):
prev_step = torch.cat(
[log_alpha[:, :, t - 1 : t], functional.pad(log_alpha[:, :, t - 1 : t], (0, 0, 1, -1), value=-1e4)],
dim=-1,
)
log_alpha[:, :, t] = torch.logsumexp(prev_step + 1e-4, dim=-1) + logp[:, :, t]
alpha_last = log_alpha[torch.arange(B), text_lengths - 1, mel_lengths - 1]
mdn_loss = -alpha_last.mean() / T_seq
return mdn_loss # , log_prob_matrix
class AlignTTSLoss(nn.Module):
"""Modified AlignTTS Loss.
Computes
- L1 and SSIM losses from output spectrograms.
- Huber loss for duration predictor.
- MDNLoss for Mixture of Density Network.
All loss values are aggregated by a weighted sum of the alpha values.
Args:
c (dict): TTS model configuration.
"""
def __init__(self, c):
super().__init__()
self.mdn_loss = MDNLoss()
self.spec_loss = MSELossMasked(False)
self.ssim = SSIMLoss()
self.dur_loss = MSELossMasked(False)
self.ssim_alpha = c.ssim_alpha
self.dur_loss_alpha = c.dur_loss_alpha
self.spec_loss_alpha = c.spec_loss_alpha
self.mdn_alpha = c.mdn_alpha
def forward(
self, logp, decoder_output, decoder_target, decoder_output_lens, dur_output, dur_target, input_lens, phase
):
# ssim_alpha, dur_loss_alpha, spec_loss_alpha, mdn_alpha = self.set_alphas(step)
spec_loss, ssim_loss, dur_loss, mdn_loss = 0, 0, 0, 0
if phase == 0:
mdn_loss = self.mdn_loss(logp, input_lens, decoder_output_lens)
elif phase == 1:
spec_loss = self.spec_loss(decoder_output, decoder_target, decoder_output_lens)
ssim_loss = self.ssim(decoder_output, decoder_target, decoder_output_lens)
elif phase == 2:
mdn_loss = self.mdn_loss(logp, input_lens, decoder_output_lens)
spec_loss = self.spec_lossX(decoder_output, decoder_target, decoder_output_lens)
ssim_loss = self.ssim(decoder_output, decoder_target, decoder_output_lens)
elif phase == 3:
dur_loss = self.dur_loss(dur_output.unsqueeze(2), dur_target.unsqueeze(2), input_lens)
else:
mdn_loss = self.mdn_loss(logp, input_lens, decoder_output_lens)
spec_loss = self.spec_loss(decoder_output, decoder_target, decoder_output_lens)
ssim_loss = self.ssim(decoder_output, decoder_target, decoder_output_lens)
dur_loss = self.dur_loss(dur_output.unsqueeze(2), dur_target.unsqueeze(2), input_lens)
loss = (
self.spec_loss_alpha * spec_loss
+ self.ssim_alpha * ssim_loss
+ self.dur_loss_alpha * dur_loss
+ self.mdn_alpha * mdn_loss
)
return {"loss": loss, "loss_l1": spec_loss, "loss_ssim": ssim_loss, "loss_dur": dur_loss, "mdn_loss": mdn_loss}
class VitsGeneratorLoss(nn.Module):
def __init__(self, c: Coqpit):
super().__init__()
self.kl_loss_alpha = c.kl_loss_alpha
self.gen_loss_alpha = c.gen_loss_alpha
self.feat_loss_alpha = c.feat_loss_alpha
self.dur_loss_alpha = c.dur_loss_alpha
self.mel_loss_alpha = c.mel_loss_alpha
self.spk_encoder_loss_alpha = c.speaker_encoder_loss_alpha
self.stft = TorchSTFT(
c.audio.fft_size,
c.audio.hop_length,
c.audio.win_length,
sample_rate=c.audio.sample_rate,
mel_fmin=c.audio.mel_fmin,
mel_fmax=c.audio.mel_fmax,
n_mels=c.audio.num_mels,
use_mel=True,
do_amp_to_db=True,
)
@staticmethod
def feature_loss(feats_real, feats_generated):
loss = 0
for dr, dg in zip(feats_real, feats_generated):
for rl, gl in zip(dr, dg):
rl = rl.float().detach()
gl = gl.float()
loss += torch.mean(torch.abs(rl - gl))
return loss * 2
@staticmethod
def generator_loss(scores_fake):
loss = 0
gen_losses = []
for dg in scores_fake:
dg = dg.float()
l = torch.mean((1 - dg) ** 2)
gen_losses.append(l)
loss += l
return loss, gen_losses
@staticmethod
def kl_loss(z_p, logs_q, m_p, logs_p, z_mask):
"""
z_p, logs_q: [b, h, t_t]
m_p, logs_p: [b, h, t_t]
"""
z_p = z_p.float()
logs_q = logs_q.float()
m_p = m_p.float()
logs_p = logs_p.float()
z_mask = z_mask.float()
kl = logs_p - logs_q - 0.5
kl += 0.5 * ((z_p - m_p) ** 2) * torch.exp(-2.0 * logs_p)
kl = torch.sum(kl * z_mask)
l = kl / torch.sum(z_mask)
return l
@staticmethod
def cosine_similarity_loss(gt_spk_emb, syn_spk_emb):
return -torch.nn.functional.cosine_similarity(gt_spk_emb, syn_spk_emb).mean()
def forward(
self,
mel_slice,
mel_slice_hat,
z_p,
logs_q,
m_p,
logs_p,
z_len,
scores_disc_fake,
feats_disc_fake,
feats_disc_real,
loss_duration,
use_speaker_encoder_as_loss=False,
gt_spk_emb=None,
syn_spk_emb=None,
):
"""
Shapes:
- mel_slice : :math:`[B, 1, T]`
- mel_slice_hat: :math:`[B, 1, T]`
- z_p: :math:`[B, C, T]`
- logs_q: :math:`[B, C, T]`
- m_p: :math:`[B, C, T]`
- logs_p: :math:`[B, C, T]`
- z_len: :math:`[B]`
- scores_disc_fake[i]: :math:`[B, C]`
- feats_disc_fake[i][j]: :math:`[B, C, T', P]`
- feats_disc_real[i][j]: :math:`[B, C, T', P]`
"""
loss = 0.0
return_dict = {}
z_mask = sequence_mask(z_len).float()
# compute losses
loss_kl = (
self.kl_loss(z_p=z_p, logs_q=logs_q, m_p=m_p, logs_p=logs_p, z_mask=z_mask.unsqueeze(1))
* self.kl_loss_alpha
)
loss_feat = (
self.feature_loss(feats_real=feats_disc_real, feats_generated=feats_disc_fake) * self.feat_loss_alpha
)
loss_gen = self.generator_loss(scores_fake=scores_disc_fake)[0] * self.gen_loss_alpha
loss_mel = torch.nn.functional.l1_loss(mel_slice, mel_slice_hat) * self.mel_loss_alpha
loss_duration = torch.sum(loss_duration.float()) * self.dur_loss_alpha
loss = loss_kl + loss_feat + loss_mel + loss_gen + loss_duration
if use_speaker_encoder_as_loss:
loss_se = self.cosine_similarity_loss(gt_spk_emb, syn_spk_emb) * self.spk_encoder_loss_alpha
loss = loss + loss_se
return_dict["loss_spk_encoder"] = loss_se
# pass losses to the dict
return_dict["loss_gen"] = loss_gen
return_dict["loss_kl"] = loss_kl
return_dict["loss_feat"] = loss_feat
return_dict["loss_mel"] = loss_mel
return_dict["loss_duration"] = loss_duration
return_dict["loss"] = loss
return return_dict
class VitsDiscriminatorLoss(nn.Module):
def __init__(self, c: Coqpit):
super().__init__()
self.disc_loss_alpha = c.disc_loss_alpha
@staticmethod
def discriminator_loss(scores_real, scores_fake):
loss = 0
real_losses = []
fake_losses = []
for dr, dg in zip(scores_real, scores_fake):
dr = dr.float()
dg = dg.float()
real_loss = torch.mean((1 - dr) ** 2)
fake_loss = torch.mean(dg**2)
loss += real_loss + fake_loss
real_losses.append(real_loss.item())
fake_losses.append(fake_loss.item())
return loss, real_losses, fake_losses
def forward(self, scores_disc_real, scores_disc_fake):
loss = 0.0
return_dict = {}
loss_disc, loss_disc_real, _ = self.discriminator_loss(
scores_real=scores_disc_real, scores_fake=scores_disc_fake
)
return_dict["loss_disc"] = loss_disc * self.disc_loss_alpha
loss = loss + return_dict["loss_disc"]
return_dict["loss"] = loss
for i, ldr in enumerate(loss_disc_real):
return_dict[f"loss_disc_real_{i}"] = ldr
return return_dict
class ForwardTTSLoss(nn.Module):
"""Generic configurable ForwardTTS loss."""
def __init__(self, c):
super().__init__()
if c.spec_loss_type == "mse":
self.spec_loss = MSELossMasked(False)
elif c.spec_loss_type == "l1":
self.spec_loss = L1LossMasked(False)
else:
raise ValueError(" [!] Unknown spec_loss_type {}".format(c.spec_loss_type))
if c.duration_loss_type == "mse":
self.dur_loss = MSELossMasked(False)
elif c.duration_loss_type == "l1":
self.dur_loss = L1LossMasked(False)
elif c.duration_loss_type == "huber":
self.dur_loss = Huber()
else:
raise ValueError(" [!] Unknown duration_loss_type {}".format(c.duration_loss_type))
if c.model_args.use_aligner:
self.aligner_loss = ForwardSumLoss()
self.aligner_loss_alpha = c.aligner_loss_alpha
if c.model_args.use_pitch:
self.pitch_loss = MSELossMasked(False)
self.pitch_loss_alpha = c.pitch_loss_alpha
if c.model_args.use_energy:
self.energy_loss = MSELossMasked(False)
self.energy_loss_alpha = c.energy_loss_alpha
if c.use_ssim_loss:
self.ssim = SSIMLoss() if c.use_ssim_loss else None
self.ssim_loss_alpha = c.ssim_loss_alpha
self.spec_loss_alpha = c.spec_loss_alpha
self.dur_loss_alpha = c.dur_loss_alpha
self.binary_alignment_loss_alpha = c.binary_align_loss_alpha
@staticmethod
def _binary_alignment_loss(alignment_hard, alignment_soft):
"""Binary loss that forces soft alignments to match the hard alignments as
explained in `https://arxiv.org/pdf/2108.10447.pdf`.
"""
log_sum = torch.log(torch.clamp(alignment_soft[alignment_hard == 1], min=1e-12)).sum()
return -log_sum / alignment_hard.sum()
def forward(
self,
decoder_output,
decoder_target,
decoder_output_lens,
dur_output,
dur_target,
pitch_output,
pitch_target,
energy_output,
energy_target,
input_lens,
alignment_logprob=None,
alignment_hard=None,
alignment_soft=None,
binary_loss_weight=None,
):
loss = 0
return_dict = {}
if hasattr(self, "ssim_loss") and self.ssim_loss_alpha > 0:
ssim_loss = self.ssim(decoder_output, decoder_target, decoder_output_lens)
loss = loss + self.ssim_loss_alpha * ssim_loss
return_dict["loss_ssim"] = self.ssim_loss_alpha * ssim_loss
if self.spec_loss_alpha > 0:
spec_loss = self.spec_loss(decoder_output, decoder_target, decoder_output_lens)
loss = loss + self.spec_loss_alpha * spec_loss
return_dict["loss_spec"] = self.spec_loss_alpha * spec_loss
if self.dur_loss_alpha > 0:
log_dur_tgt = torch.log(dur_target.float() + 1)
dur_loss = self.dur_loss(dur_output[:, :, None], log_dur_tgt[:, :, None], input_lens)
loss = loss + self.dur_loss_alpha * dur_loss
return_dict["loss_dur"] = self.dur_loss_alpha * dur_loss
if hasattr(self, "pitch_loss") and self.pitch_loss_alpha > 0:
pitch_loss = self.pitch_loss(pitch_output.transpose(1, 2), pitch_target.transpose(1, 2), input_lens)
loss = loss + self.pitch_loss_alpha * pitch_loss
return_dict["loss_pitch"] = self.pitch_loss_alpha * pitch_loss
if hasattr(self, "energy_loss") and self.energy_loss_alpha > 0:
energy_loss = self.energy_loss(energy_output.transpose(1, 2), energy_target.transpose(1, 2), input_lens)
loss = loss + self.energy_loss_alpha * energy_loss
return_dict["loss_energy"] = self.energy_loss_alpha * energy_loss
if hasattr(self, "aligner_loss") and self.aligner_loss_alpha > 0:
aligner_loss = self.aligner_loss(alignment_logprob, input_lens, decoder_output_lens)
loss = loss + self.aligner_loss_alpha * aligner_loss
return_dict["loss_aligner"] = self.aligner_loss_alpha * aligner_loss
if self.binary_alignment_loss_alpha > 0 and alignment_hard is not None:
binary_alignment_loss = self._binary_alignment_loss(alignment_hard, alignment_soft)
loss = loss + self.binary_alignment_loss_alpha * binary_alignment_loss
if binary_loss_weight:
return_dict["loss_binary_alignment"] = (
self.binary_alignment_loss_alpha * binary_alignment_loss * binary_loss_weight
)
else:
return_dict["loss_binary_alignment"] = self.binary_alignment_loss_alpha * binary_alignment_loss
return_dict["loss"] = loss
return return_dict
|