Spaces:
Running
Running
File size: 18,785 Bytes
9b2107c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 |
# coding: utf-8
# adapted from https://github.com/r9y9/tacotron_pytorch
import torch
from torch import nn
from .attentions import init_attn
from .common_layers import Prenet
class BatchNormConv1d(nn.Module):
r"""A wrapper for Conv1d with BatchNorm. It sets the activation
function between Conv and BatchNorm layers. BatchNorm layer
is initialized with the TF default values for momentum and eps.
Args:
in_channels: size of each input sample
out_channels: size of each output samples
kernel_size: kernel size of conv filters
stride: stride of conv filters
padding: padding of conv filters
activation: activation function set b/w Conv1d and BatchNorm
Shapes:
- input: (B, D)
- output: (B, D)
"""
def __init__(self, in_channels, out_channels, kernel_size, stride, padding, activation=None):
super().__init__()
self.padding = padding
self.padder = nn.ConstantPad1d(padding, 0)
self.conv1d = nn.Conv1d(
in_channels, out_channels, kernel_size=kernel_size, stride=stride, padding=0, bias=False
)
# Following tensorflow's default parameters
self.bn = nn.BatchNorm1d(out_channels, momentum=0.99, eps=1e-3)
self.activation = activation
# self.init_layers()
def init_layers(self):
if isinstance(self.activation, torch.nn.ReLU):
w_gain = "relu"
elif isinstance(self.activation, torch.nn.Tanh):
w_gain = "tanh"
elif self.activation is None:
w_gain = "linear"
else:
raise RuntimeError("Unknown activation function")
torch.nn.init.xavier_uniform_(self.conv1d.weight, gain=torch.nn.init.calculate_gain(w_gain))
def forward(self, x):
x = self.padder(x)
x = self.conv1d(x)
x = self.bn(x)
if self.activation is not None:
x = self.activation(x)
return x
class Highway(nn.Module):
r"""Highway layers as explained in https://arxiv.org/abs/1505.00387
Args:
in_features (int): size of each input sample
out_feature (int): size of each output sample
Shapes:
- input: (B, *, H_in)
- output: (B, *, H_out)
"""
# TODO: Try GLU layer
def __init__(self, in_features, out_feature):
super().__init__()
self.H = nn.Linear(in_features, out_feature)
self.H.bias.data.zero_()
self.T = nn.Linear(in_features, out_feature)
self.T.bias.data.fill_(-1)
self.relu = nn.ReLU()
self.sigmoid = nn.Sigmoid()
# self.init_layers()
def init_layers(self):
torch.nn.init.xavier_uniform_(self.H.weight, gain=torch.nn.init.calculate_gain("relu"))
torch.nn.init.xavier_uniform_(self.T.weight, gain=torch.nn.init.calculate_gain("sigmoid"))
def forward(self, inputs):
H = self.relu(self.H(inputs))
T = self.sigmoid(self.T(inputs))
return H * T + inputs * (1.0 - T)
class CBHG(nn.Module):
"""CBHG module: a recurrent neural network composed of:
- 1-d convolution banks
- Highway networks + residual connections
- Bidirectional gated recurrent units
Args:
in_features (int): sample size
K (int): max filter size in conv bank
projections (list): conv channel sizes for conv projections
num_highways (int): number of highways layers
Shapes:
- input: (B, C, T_in)
- output: (B, T_in, C*2)
"""
# pylint: disable=dangerous-default-value
def __init__(
self,
in_features,
K=16,
conv_bank_features=128,
conv_projections=[128, 128],
highway_features=128,
gru_features=128,
num_highways=4,
):
super().__init__()
self.in_features = in_features
self.conv_bank_features = conv_bank_features
self.highway_features = highway_features
self.gru_features = gru_features
self.conv_projections = conv_projections
self.relu = nn.ReLU()
# list of conv1d bank with filter size k=1...K
# TODO: try dilational layers instead
self.conv1d_banks = nn.ModuleList(
[
BatchNormConv1d(
in_features,
conv_bank_features,
kernel_size=k,
stride=1,
padding=[(k - 1) // 2, k // 2],
activation=self.relu,
)
for k in range(1, K + 1)
]
)
# max pooling of conv bank, with padding
# TODO: try average pooling OR larger kernel size
out_features = [K * conv_bank_features] + conv_projections[:-1]
activations = [self.relu] * (len(conv_projections) - 1)
activations += [None]
# setup conv1d projection layers
layer_set = []
for in_size, out_size, ac in zip(out_features, conv_projections, activations):
layer = BatchNormConv1d(in_size, out_size, kernel_size=3, stride=1, padding=[1, 1], activation=ac)
layer_set.append(layer)
self.conv1d_projections = nn.ModuleList(layer_set)
# setup Highway layers
if self.highway_features != conv_projections[-1]:
self.pre_highway = nn.Linear(conv_projections[-1], highway_features, bias=False)
self.highways = nn.ModuleList([Highway(highway_features, highway_features) for _ in range(num_highways)])
# bi-directional GPU layer
self.gru = nn.GRU(gru_features, gru_features, 1, batch_first=True, bidirectional=True)
def forward(self, inputs):
# (B, in_features, T_in)
x = inputs
# (B, hid_features*K, T_in)
# Concat conv1d bank outputs
outs = []
for conv1d in self.conv1d_banks:
out = conv1d(x)
outs.append(out)
x = torch.cat(outs, dim=1)
assert x.size(1) == self.conv_bank_features * len(self.conv1d_banks)
for conv1d in self.conv1d_projections:
x = conv1d(x)
x += inputs
x = x.transpose(1, 2)
if self.highway_features != self.conv_projections[-1]:
x = self.pre_highway(x)
# Residual connection
# TODO: try residual scaling as in Deep Voice 3
# TODO: try plain residual layers
for highway in self.highways:
x = highway(x)
# (B, T_in, hid_features*2)
# TODO: replace GRU with convolution as in Deep Voice 3
self.gru.flatten_parameters()
outputs, _ = self.gru(x)
return outputs
class EncoderCBHG(nn.Module):
r"""CBHG module with Encoder specific arguments"""
def __init__(self):
super().__init__()
self.cbhg = CBHG(
128,
K=16,
conv_bank_features=128,
conv_projections=[128, 128],
highway_features=128,
gru_features=128,
num_highways=4,
)
def forward(self, x):
return self.cbhg(x)
class Encoder(nn.Module):
r"""Stack Prenet and CBHG module for encoder
Args:
inputs (FloatTensor): embedding features
Shapes:
- inputs: (B, T, D_in)
- outputs: (B, T, 128 * 2)
"""
def __init__(self, in_features):
super().__init__()
self.prenet = Prenet(in_features, out_features=[256, 128])
self.cbhg = EncoderCBHG()
def forward(self, inputs):
# B x T x prenet_dim
outputs = self.prenet(inputs)
outputs = self.cbhg(outputs.transpose(1, 2))
return outputs
class PostCBHG(nn.Module):
def __init__(self, mel_dim):
super().__init__()
self.cbhg = CBHG(
mel_dim,
K=8,
conv_bank_features=128,
conv_projections=[256, mel_dim],
highway_features=128,
gru_features=128,
num_highways=4,
)
def forward(self, x):
return self.cbhg(x)
class Decoder(nn.Module):
"""Tacotron decoder.
Args:
in_channels (int): number of input channels.
frame_channels (int): number of feature frame channels.
r (int): number of outputs per time step (reduction rate).
memory_size (int): size of the past window. if <= 0 memory_size = r
attn_type (string): type of attention used in decoder.
attn_windowing (bool): if true, define an attention window centered to maximum
attention response. It provides more robust attention alignment especially
at interence time.
attn_norm (string): attention normalization function. 'sigmoid' or 'softmax'.
prenet_type (string): 'original' or 'bn'.
prenet_dropout (float): prenet dropout rate.
forward_attn (bool): if true, use forward attention method. https://arxiv.org/abs/1807.06736
trans_agent (bool): if true, use transition agent. https://arxiv.org/abs/1807.06736
forward_attn_mask (bool): if true, mask attention values smaller than a threshold.
location_attn (bool): if true, use location sensitive attention.
attn_K (int): number of attention heads for GravesAttention.
separate_stopnet (bool): if true, detach stopnet input to prevent gradient flow.
d_vector_dim (int): size of speaker embedding vector, for multi-speaker training.
max_decoder_steps (int): Maximum number of steps allowed for the decoder. Defaults to 500.
"""
# Pylint gets confused by PyTorch conventions here
# pylint: disable=attribute-defined-outside-init
def __init__(
self,
in_channels,
frame_channels,
r,
memory_size,
attn_type,
attn_windowing,
attn_norm,
prenet_type,
prenet_dropout,
forward_attn,
trans_agent,
forward_attn_mask,
location_attn,
attn_K,
separate_stopnet,
max_decoder_steps,
):
super().__init__()
self.r_init = r
self.r = r
self.in_channels = in_channels
self.max_decoder_steps = max_decoder_steps
self.use_memory_queue = memory_size > 0
self.memory_size = memory_size if memory_size > 0 else r
self.frame_channels = frame_channels
self.separate_stopnet = separate_stopnet
self.query_dim = 256
# memory -> |Prenet| -> processed_memory
prenet_dim = frame_channels * self.memory_size if self.use_memory_queue else frame_channels
self.prenet = Prenet(prenet_dim, prenet_type, prenet_dropout, out_features=[256, 128])
# processed_inputs, processed_memory -> |Attention| -> Attention, attention, RNN_State
# attention_rnn generates queries for the attention mechanism
self.attention_rnn = nn.GRUCell(in_channels + 128, self.query_dim)
self.attention = init_attn(
attn_type=attn_type,
query_dim=self.query_dim,
embedding_dim=in_channels,
attention_dim=128,
location_attention=location_attn,
attention_location_n_filters=32,
attention_location_kernel_size=31,
windowing=attn_windowing,
norm=attn_norm,
forward_attn=forward_attn,
trans_agent=trans_agent,
forward_attn_mask=forward_attn_mask,
attn_K=attn_K,
)
# (processed_memory | attention context) -> |Linear| -> decoder_RNN_input
self.project_to_decoder_in = nn.Linear(256 + in_channels, 256)
# decoder_RNN_input -> |RNN| -> RNN_state
self.decoder_rnns = nn.ModuleList([nn.GRUCell(256, 256) for _ in range(2)])
# RNN_state -> |Linear| -> mel_spec
self.proj_to_mel = nn.Linear(256, frame_channels * self.r_init)
# learn init values instead of zero init.
self.stopnet = StopNet(256 + frame_channels * self.r_init)
def set_r(self, new_r):
self.r = new_r
def _reshape_memory(self, memory):
"""
Reshape the spectrograms for given 'r'
"""
# Grouping multiple frames if necessary
if memory.size(-1) == self.frame_channels:
memory = memory.view(memory.shape[0], memory.size(1) // self.r, -1)
# Time first (T_decoder, B, frame_channels)
memory = memory.transpose(0, 1)
return memory
def _init_states(self, inputs):
"""
Initialization of decoder states
"""
B = inputs.size(0)
# go frame as zeros matrix
if self.use_memory_queue:
self.memory_input = torch.zeros(1, device=inputs.device).repeat(B, self.frame_channels * self.memory_size)
else:
self.memory_input = torch.zeros(1, device=inputs.device).repeat(B, self.frame_channels)
# decoder states
self.attention_rnn_hidden = torch.zeros(1, device=inputs.device).repeat(B, 256)
self.decoder_rnn_hiddens = [
torch.zeros(1, device=inputs.device).repeat(B, 256) for idx in range(len(self.decoder_rnns))
]
self.context_vec = inputs.data.new(B, self.in_channels).zero_()
# cache attention inputs
self.processed_inputs = self.attention.preprocess_inputs(inputs)
def _parse_outputs(self, outputs, attentions, stop_tokens):
# Back to batch first
attentions = torch.stack(attentions).transpose(0, 1)
stop_tokens = torch.stack(stop_tokens).transpose(0, 1)
outputs = torch.stack(outputs).transpose(0, 1).contiguous()
outputs = outputs.view(outputs.size(0), -1, self.frame_channels)
outputs = outputs.transpose(1, 2)
return outputs, attentions, stop_tokens
def decode(self, inputs, mask=None):
# Prenet
processed_memory = self.prenet(self.memory_input)
# Attention RNN
self.attention_rnn_hidden = self.attention_rnn(
torch.cat((processed_memory, self.context_vec), -1), self.attention_rnn_hidden
)
self.context_vec = self.attention(self.attention_rnn_hidden, inputs, self.processed_inputs, mask)
# Concat RNN output and attention context vector
decoder_input = self.project_to_decoder_in(torch.cat((self.attention_rnn_hidden, self.context_vec), -1))
# Pass through the decoder RNNs
for idx, decoder_rnn in enumerate(self.decoder_rnns):
self.decoder_rnn_hiddens[idx] = decoder_rnn(decoder_input, self.decoder_rnn_hiddens[idx])
# Residual connection
decoder_input = self.decoder_rnn_hiddens[idx] + decoder_input
decoder_output = decoder_input
# predict mel vectors from decoder vectors
output = self.proj_to_mel(decoder_output)
# output = torch.sigmoid(output)
# predict stop token
stopnet_input = torch.cat([decoder_output, output], -1)
if self.separate_stopnet:
stop_token = self.stopnet(stopnet_input.detach())
else:
stop_token = self.stopnet(stopnet_input)
output = output[:, : self.r * self.frame_channels]
return output, stop_token, self.attention.attention_weights
def _update_memory_input(self, new_memory):
if self.use_memory_queue:
if self.memory_size > self.r:
# memory queue size is larger than number of frames per decoder iter
self.memory_input = torch.cat(
[new_memory, self.memory_input[:, : (self.memory_size - self.r) * self.frame_channels].clone()],
dim=-1,
)
else:
# memory queue size smaller than number of frames per decoder iter
self.memory_input = new_memory[:, : self.memory_size * self.frame_channels]
else:
# use only the last frame prediction
# assert new_memory.shape[-1] == self.r * self.frame_channels
self.memory_input = new_memory[:, self.frame_channels * (self.r - 1) :]
def forward(self, inputs, memory, mask):
"""
Args:
inputs: Encoder outputs.
memory: Decoder memory (autoregression. If None (at eval-time),
decoder outputs are used as decoder inputs. If None, it uses the last
output as the input.
mask: Attention mask for sequence padding.
Shapes:
- inputs: (B, T, D_out_enc)
- memory: (B, T_mel, D_mel)
"""
# Run greedy decoding if memory is None
memory = self._reshape_memory(memory)
outputs = []
attentions = []
stop_tokens = []
t = 0
self._init_states(inputs)
self.attention.init_states(inputs)
while len(outputs) < memory.size(0):
if t > 0:
new_memory = memory[t - 1]
self._update_memory_input(new_memory)
output, stop_token, attention = self.decode(inputs, mask)
outputs += [output]
attentions += [attention]
stop_tokens += [stop_token.squeeze(1)]
t += 1
return self._parse_outputs(outputs, attentions, stop_tokens)
def inference(self, inputs):
"""
Args:
inputs: encoder outputs.
Shapes:
- inputs: batch x time x encoder_out_dim
"""
outputs = []
attentions = []
stop_tokens = []
t = 0
self._init_states(inputs)
self.attention.init_states(inputs)
while True:
if t > 0:
new_memory = outputs[-1]
self._update_memory_input(new_memory)
output, stop_token, attention = self.decode(inputs, None)
stop_token = torch.sigmoid(stop_token.data)
outputs += [output]
attentions += [attention]
stop_tokens += [stop_token]
t += 1
if t > inputs.shape[1] / 4 and (stop_token > 0.6 or attention[:, -1].item() > 0.6):
break
if t > self.max_decoder_steps:
print(" | > Decoder stopped with 'max_decoder_steps")
break
return self._parse_outputs(outputs, attentions, stop_tokens)
class StopNet(nn.Module):
r"""Stopnet signalling decoder to stop inference.
Args:
in_features (int): feature dimension of input.
"""
def __init__(self, in_features):
super().__init__()
self.dropout = nn.Dropout(0.1)
self.linear = nn.Linear(in_features, 1)
torch.nn.init.xavier_uniform_(self.linear.weight, gain=torch.nn.init.calculate_gain("linear"))
def forward(self, inputs):
outputs = self.dropout(inputs)
outputs = self.linear(outputs)
return outputs
|