File size: 15,855 Bytes
9b2107c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
import torch
from torch import nn
from torch.nn import functional as F

from .attentions import init_attn
from .common_layers import Linear, Prenet


# pylint: disable=no-value-for-parameter
# pylint: disable=unexpected-keyword-arg
class ConvBNBlock(nn.Module):
    r"""Convolutions with Batch Normalization and non-linear activation.

    Args:
        in_channels (int): number of input channels.
        out_channels (int): number of output channels.
        kernel_size (int): convolution kernel size.
        activation (str): 'relu', 'tanh', None (linear).

    Shapes:
        - input: (B, C_in, T)
        - output: (B, C_out, T)
    """

    def __init__(self, in_channels, out_channels, kernel_size, activation=None):
        super().__init__()
        assert (kernel_size - 1) % 2 == 0
        padding = (kernel_size - 1) // 2
        self.convolution1d = nn.Conv1d(in_channels, out_channels, kernel_size, padding=padding)
        self.batch_normalization = nn.BatchNorm1d(out_channels, momentum=0.1, eps=1e-5)
        self.dropout = nn.Dropout(p=0.5)
        if activation == "relu":
            self.activation = nn.ReLU()
        elif activation == "tanh":
            self.activation = nn.Tanh()
        else:
            self.activation = nn.Identity()

    def forward(self, x):
        o = self.convolution1d(x)
        o = self.batch_normalization(o)
        o = self.activation(o)
        o = self.dropout(o)
        return o


class Postnet(nn.Module):
    r"""Tacotron2 Postnet

    Args:
        in_out_channels (int): number of output channels.

    Shapes:
        - input: (B, C_in, T)
        - output: (B, C_in, T)
    """

    def __init__(self, in_out_channels, num_convs=5):
        super().__init__()
        self.convolutions = nn.ModuleList()
        self.convolutions.append(ConvBNBlock(in_out_channels, 512, kernel_size=5, activation="tanh"))
        for _ in range(1, num_convs - 1):
            self.convolutions.append(ConvBNBlock(512, 512, kernel_size=5, activation="tanh"))
        self.convolutions.append(ConvBNBlock(512, in_out_channels, kernel_size=5, activation=None))

    def forward(self, x):
        o = x
        for layer in self.convolutions:
            o = layer(o)
        return o


class Encoder(nn.Module):
    r"""Tacotron2 Encoder

    Args:
        in_out_channels (int): number of input and output channels.

    Shapes:
        - input: (B, C_in, T)
        - output: (B, C_in, T)
    """

    def __init__(self, in_out_channels=512):
        super().__init__()
        self.convolutions = nn.ModuleList()
        for _ in range(3):
            self.convolutions.append(ConvBNBlock(in_out_channels, in_out_channels, 5, "relu"))
        self.lstm = nn.LSTM(
            in_out_channels, int(in_out_channels / 2), num_layers=1, batch_first=True, bias=True, bidirectional=True
        )
        self.rnn_state = None

    def forward(self, x, input_lengths):
        o = x
        for layer in self.convolutions:
            o = layer(o)
        o = o.transpose(1, 2)
        o = nn.utils.rnn.pack_padded_sequence(o, input_lengths.cpu(), batch_first=True)
        self.lstm.flatten_parameters()
        o, _ = self.lstm(o)
        o, _ = nn.utils.rnn.pad_packed_sequence(o, batch_first=True)
        return o

    def inference(self, x):
        o = x
        for layer in self.convolutions:
            o = layer(o)
        o = o.transpose(1, 2)
        # self.lstm.flatten_parameters()
        o, _ = self.lstm(o)
        return o


# adapted from https://github.com/NVIDIA/tacotron2/
class Decoder(nn.Module):
    """Tacotron2 decoder. We don't use Zoneout but Dropout between RNN layers.

    Args:
        in_channels (int): number of input channels.
        frame_channels (int): number of feature frame channels.
        r (int): number of outputs per time step (reduction rate).
        memory_size (int): size of the past window. if <= 0 memory_size = r
        attn_type (string): type of attention used in decoder.
        attn_win (bool): if true, define an attention window centered to maximum
            attention response. It provides more robust attention alignment especially
            at interence time.
        attn_norm (string): attention normalization function. 'sigmoid' or 'softmax'.
        prenet_type (string): 'original' or 'bn'.
        prenet_dropout (float): prenet dropout rate.
        forward_attn (bool): if true, use forward attention method. https://arxiv.org/abs/1807.06736
        trans_agent (bool): if true, use transition agent. https://arxiv.org/abs/1807.06736
        forward_attn_mask (bool): if true, mask attention values smaller than a threshold.
        location_attn (bool): if true, use location sensitive attention.
        attn_K (int): number of attention heads for GravesAttention.
        separate_stopnet (bool): if true, detach stopnet input to prevent gradient flow.
        max_decoder_steps (int): Maximum number of steps allowed for the decoder. Defaults to 10000.
    """

    # Pylint gets confused by PyTorch conventions here
    # pylint: disable=attribute-defined-outside-init
    def __init__(
        self,
        in_channels,
        frame_channels,
        r,
        attn_type,
        attn_win,
        attn_norm,
        prenet_type,
        prenet_dropout,
        forward_attn,
        trans_agent,
        forward_attn_mask,
        location_attn,
        attn_K,
        separate_stopnet,
        max_decoder_steps,
    ):
        super().__init__()
        self.frame_channels = frame_channels
        self.r_init = r
        self.r = r
        self.encoder_embedding_dim = in_channels
        self.separate_stopnet = separate_stopnet
        self.max_decoder_steps = max_decoder_steps
        self.stop_threshold = 0.5

        # model dimensions
        self.query_dim = 1024
        self.decoder_rnn_dim = 1024
        self.prenet_dim = 256
        self.attn_dim = 128
        self.p_attention_dropout = 0.1
        self.p_decoder_dropout = 0.1

        # memory -> |Prenet| -> processed_memory
        prenet_dim = self.frame_channels
        self.prenet = Prenet(
            prenet_dim, prenet_type, prenet_dropout, out_features=[self.prenet_dim, self.prenet_dim], bias=False
        )

        self.attention_rnn = nn.LSTMCell(self.prenet_dim + in_channels, self.query_dim, bias=True)

        self.attention = init_attn(
            attn_type=attn_type,
            query_dim=self.query_dim,
            embedding_dim=in_channels,
            attention_dim=128,
            location_attention=location_attn,
            attention_location_n_filters=32,
            attention_location_kernel_size=31,
            windowing=attn_win,
            norm=attn_norm,
            forward_attn=forward_attn,
            trans_agent=trans_agent,
            forward_attn_mask=forward_attn_mask,
            attn_K=attn_K,
        )

        self.decoder_rnn = nn.LSTMCell(self.query_dim + in_channels, self.decoder_rnn_dim, bias=True)

        self.linear_projection = Linear(self.decoder_rnn_dim + in_channels, self.frame_channels * self.r_init)

        self.stopnet = nn.Sequential(
            nn.Dropout(0.1),
            Linear(self.decoder_rnn_dim + self.frame_channels * self.r_init, 1, bias=True, init_gain="sigmoid"),
        )
        self.memory_truncated = None

    def set_r(self, new_r):
        self.r = new_r

    def get_go_frame(self, inputs):
        B = inputs.size(0)
        memory = torch.zeros(1, device=inputs.device).repeat(B, self.frame_channels * self.r)
        return memory

    def _init_states(self, inputs, mask, keep_states=False):
        B = inputs.size(0)
        # T = inputs.size(1)
        if not keep_states:
            self.query = torch.zeros(1, device=inputs.device).repeat(B, self.query_dim)
            self.attention_rnn_cell_state = torch.zeros(1, device=inputs.device).repeat(B, self.query_dim)
            self.decoder_hidden = torch.zeros(1, device=inputs.device).repeat(B, self.decoder_rnn_dim)
            self.decoder_cell = torch.zeros(1, device=inputs.device).repeat(B, self.decoder_rnn_dim)
            self.context = torch.zeros(1, device=inputs.device).repeat(B, self.encoder_embedding_dim)
        self.inputs = inputs
        self.processed_inputs = self.attention.preprocess_inputs(inputs)
        self.mask = mask

    def _reshape_memory(self, memory):
        """
        Reshape the spectrograms for given 'r'
        """
        # Grouping multiple frames if necessary
        if memory.size(-1) == self.frame_channels:
            memory = memory.view(memory.shape[0], memory.size(1) // self.r, -1)
        # Time first (T_decoder, B, frame_channels)
        memory = memory.transpose(0, 1)
        return memory

    def _parse_outputs(self, outputs, stop_tokens, alignments):
        alignments = torch.stack(alignments).transpose(0, 1)
        stop_tokens = torch.stack(stop_tokens).transpose(0, 1)
        outputs = torch.stack(outputs).transpose(0, 1).contiguous()
        outputs = outputs.view(outputs.size(0), -1, self.frame_channels)
        outputs = outputs.transpose(1, 2)
        return outputs, stop_tokens, alignments

    def _update_memory(self, memory):
        if len(memory.shape) == 2:
            return memory[:, self.frame_channels * (self.r - 1) :]
        return memory[:, :, self.frame_channels * (self.r - 1) :]

    def decode(self, memory):
        """
        shapes:
           - memory: B x r * self.frame_channels
        """
        # self.context: B x D_en
        # query_input: B x D_en + (r * self.frame_channels)
        query_input = torch.cat((memory, self.context), -1)
        # self.query and self.attention_rnn_cell_state : B x D_attn_rnn
        self.query, self.attention_rnn_cell_state = self.attention_rnn(
            query_input, (self.query, self.attention_rnn_cell_state)
        )
        self.query = F.dropout(self.query, self.p_attention_dropout, self.training)
        self.attention_rnn_cell_state = F.dropout(
            self.attention_rnn_cell_state, self.p_attention_dropout, self.training
        )
        # B x D_en
        self.context = self.attention(self.query, self.inputs, self.processed_inputs, self.mask)
        # B x (D_en + D_attn_rnn)
        decoder_rnn_input = torch.cat((self.query, self.context), -1)
        # self.decoder_hidden and self.decoder_cell: B x D_decoder_rnn
        self.decoder_hidden, self.decoder_cell = self.decoder_rnn(
            decoder_rnn_input, (self.decoder_hidden, self.decoder_cell)
        )
        self.decoder_hidden = F.dropout(self.decoder_hidden, self.p_decoder_dropout, self.training)
        # B x (D_decoder_rnn + D_en)
        decoder_hidden_context = torch.cat((self.decoder_hidden, self.context), dim=1)
        # B x (self.r * self.frame_channels)
        decoder_output = self.linear_projection(decoder_hidden_context)
        # B x (D_decoder_rnn + (self.r * self.frame_channels))
        stopnet_input = torch.cat((self.decoder_hidden, decoder_output), dim=1)
        if self.separate_stopnet:
            stop_token = self.stopnet(stopnet_input.detach())
        else:
            stop_token = self.stopnet(stopnet_input)
        # select outputs for the reduction rate self.r
        decoder_output = decoder_output[:, : self.r * self.frame_channels]
        return decoder_output, self.attention.attention_weights, stop_token

    def forward(self, inputs, memories, mask):
        r"""Train Decoder with teacher forcing.
        Args:
            inputs: Encoder outputs.
            memories: Feature frames for teacher-forcing.
            mask: Attention mask for sequence padding.

        Shapes:
            - inputs: (B, T, D_out_enc)
            - memory: (B, T_mel, D_mel)
            - outputs: (B, T_mel, D_mel)
            - alignments: (B, T_in, T_out)
            - stop_tokens: (B, T_out)
        """
        memory = self.get_go_frame(inputs).unsqueeze(0)
        memories = self._reshape_memory(memories)
        memories = torch.cat((memory, memories), dim=0)
        memories = self._update_memory(memories)
        memories = self.prenet(memories)

        self._init_states(inputs, mask=mask)
        self.attention.init_states(inputs)

        outputs, stop_tokens, alignments = [], [], []
        while len(outputs) < memories.size(0) - 1:
            memory = memories[len(outputs)]
            decoder_output, attention_weights, stop_token = self.decode(memory)
            outputs += [decoder_output.squeeze(1)]
            stop_tokens += [stop_token.squeeze(1)]
            alignments += [attention_weights]

        outputs, stop_tokens, alignments = self._parse_outputs(outputs, stop_tokens, alignments)
        return outputs, alignments, stop_tokens

    def inference(self, inputs):
        r"""Decoder inference without teacher forcing and use
        Stopnet to stop decoder.
        Args:
            inputs: Encoder outputs.

        Shapes:
            - inputs: (B, T, D_out_enc)
            - outputs: (B, T_mel, D_mel)
            - alignments: (B, T_in, T_out)
            - stop_tokens: (B, T_out)
        """
        memory = self.get_go_frame(inputs)
        memory = self._update_memory(memory)

        self._init_states(inputs, mask=None)
        self.attention.init_states(inputs)

        outputs, stop_tokens, alignments, t = [], [], [], 0
        while True:
            memory = self.prenet(memory)
            decoder_output, alignment, stop_token = self.decode(memory)
            stop_token = torch.sigmoid(stop_token.data)
            outputs += [decoder_output.squeeze(1)]
            stop_tokens += [stop_token]
            alignments += [alignment]

            if stop_token > self.stop_threshold and t > inputs.shape[0] // 2:
                break
            if len(outputs) == self.max_decoder_steps:
                print(f"   > Decoder stopped with `max_decoder_steps` {self.max_decoder_steps}")
                break

            memory = self._update_memory(decoder_output)
            t += 1

        outputs, stop_tokens, alignments = self._parse_outputs(outputs, stop_tokens, alignments)

        return outputs, alignments, stop_tokens

    def inference_truncated(self, inputs):
        """
        Preserve decoder states for continuous inference
        """
        if self.memory_truncated is None:
            self.memory_truncated = self.get_go_frame(inputs)
            self._init_states(inputs, mask=None, keep_states=False)
        else:
            self._init_states(inputs, mask=None, keep_states=True)

        self.attention.init_states(inputs)
        outputs, stop_tokens, alignments, t = [], [], [], 0
        while True:
            memory = self.prenet(self.memory_truncated)
            decoder_output, alignment, stop_token = self.decode(memory)
            stop_token = torch.sigmoid(stop_token.data)
            outputs += [decoder_output.squeeze(1)]
            stop_tokens += [stop_token]
            alignments += [alignment]

            if stop_token > 0.7:
                break
            if len(outputs) == self.max_decoder_steps:
                print("   | > Decoder stopped with 'max_decoder_steps")
                break

            self.memory_truncated = decoder_output
            t += 1

        outputs, stop_tokens, alignments = self._parse_outputs(outputs, stop_tokens, alignments)

        return outputs, alignments, stop_tokens

    def inference_step(self, inputs, t, memory=None):
        """
        For debug purposes
        """
        if t == 0:
            memory = self.get_go_frame(inputs)
            self._init_states(inputs, mask=None)

        memory = self.prenet(memory)
        decoder_output, stop_token, alignment = self.decode(memory)
        stop_token = torch.sigmoid(stop_token.data)
        memory = decoder_output
        return decoder_output, stop_token, alignment