File size: 6,196 Bytes
9b2107c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
import math

import torch
from torch import nn
from torch.nn.utils.parametrize import remove_parametrizations

from TTS.vocoder.layers.parallel_wavegan import ResidualBlock


class ParallelWaveganDiscriminator(nn.Module):
    """PWGAN discriminator as in https://arxiv.org/abs/1910.11480.
    It classifies each audio window real/fake and returns a sequence
    of predictions.
        It is a stack of convolutional blocks with dilation.
    """

    # pylint: disable=dangerous-default-value
    def __init__(
        self,
        in_channels=1,
        out_channels=1,
        kernel_size=3,
        num_layers=10,
        conv_channels=64,
        dilation_factor=1,
        nonlinear_activation="LeakyReLU",
        nonlinear_activation_params={"negative_slope": 0.2},
        bias=True,
    ):
        super().__init__()
        assert (kernel_size - 1) % 2 == 0, " [!] does not support even number kernel size."
        assert dilation_factor > 0, " [!] dilation factor must be > 0."
        self.conv_layers = nn.ModuleList()
        conv_in_channels = in_channels
        for i in range(num_layers - 1):
            if i == 0:
                dilation = 1
            else:
                dilation = i if dilation_factor == 1 else dilation_factor**i
                conv_in_channels = conv_channels
            padding = (kernel_size - 1) // 2 * dilation
            conv_layer = [
                nn.Conv1d(
                    conv_in_channels,
                    conv_channels,
                    kernel_size=kernel_size,
                    padding=padding,
                    dilation=dilation,
                    bias=bias,
                ),
                getattr(nn, nonlinear_activation)(inplace=True, **nonlinear_activation_params),
            ]
            self.conv_layers += conv_layer
        padding = (kernel_size - 1) // 2
        last_conv_layer = nn.Conv1d(conv_in_channels, out_channels, kernel_size=kernel_size, padding=padding, bias=bias)
        self.conv_layers += [last_conv_layer]
        self.apply_weight_norm()

    def forward(self, x):
        """
            x : (B, 1, T).
        Returns:
            Tensor: (B, 1, T)
        """
        for f in self.conv_layers:
            x = f(x)
        return x

    def apply_weight_norm(self):
        def _apply_weight_norm(m):
            if isinstance(m, (torch.nn.Conv1d, torch.nn.Conv2d)):
                torch.nn.utils.parametrizations.weight_norm(m)

        self.apply(_apply_weight_norm)

    def remove_weight_norm(self):
        def _remove_weight_norm(m):
            try:
                # print(f"Weight norm is removed from {m}.")
                remove_parametrizations(m, "weight")
            except ValueError:  # this module didn't have weight norm
                return

        self.apply(_remove_weight_norm)


class ResidualParallelWaveganDiscriminator(nn.Module):
    # pylint: disable=dangerous-default-value
    def __init__(
        self,
        in_channels=1,
        out_channels=1,
        kernel_size=3,
        num_layers=30,
        stacks=3,
        res_channels=64,
        gate_channels=128,
        skip_channels=64,
        dropout=0.0,
        bias=True,
        nonlinear_activation="LeakyReLU",
        nonlinear_activation_params={"negative_slope": 0.2},
    ):
        super().__init__()
        assert (kernel_size - 1) % 2 == 0, "Not support even number kernel size."

        self.in_channels = in_channels
        self.out_channels = out_channels
        self.num_layers = num_layers
        self.stacks = stacks
        self.kernel_size = kernel_size
        self.res_factor = math.sqrt(1.0 / num_layers)

        # check the number of num_layers and stacks
        assert num_layers % stacks == 0
        layers_per_stack = num_layers // stacks

        # define first convolution
        self.first_conv = nn.Sequential(
            nn.Conv1d(in_channels, res_channels, kernel_size=1, padding=0, dilation=1, bias=True),
            getattr(nn, nonlinear_activation)(inplace=True, **nonlinear_activation_params),
        )

        # define residual blocks
        self.conv_layers = nn.ModuleList()
        for layer in range(num_layers):
            dilation = 2 ** (layer % layers_per_stack)
            conv = ResidualBlock(
                kernel_size=kernel_size,
                res_channels=res_channels,
                gate_channels=gate_channels,
                skip_channels=skip_channels,
                aux_channels=-1,
                dilation=dilation,
                dropout=dropout,
                bias=bias,
                use_causal_conv=False,
            )
            self.conv_layers += [conv]

        # define output layers
        self.last_conv_layers = nn.ModuleList(
            [
                getattr(nn, nonlinear_activation)(inplace=True, **nonlinear_activation_params),
                nn.Conv1d(skip_channels, skip_channels, kernel_size=1, padding=0, dilation=1, bias=True),
                getattr(nn, nonlinear_activation)(inplace=True, **nonlinear_activation_params),
                nn.Conv1d(skip_channels, out_channels, kernel_size=1, padding=0, dilation=1, bias=True),
            ]
        )

        # apply weight norm
        self.apply_weight_norm()

    def forward(self, x):
        """
        x: (B, 1, T).
        """
        x = self.first_conv(x)

        skips = 0
        for f in self.conv_layers:
            x, h = f(x, None)
            skips += h
        skips *= self.res_factor

        # apply final layers
        x = skips
        for f in self.last_conv_layers:
            x = f(x)
        return x

    def apply_weight_norm(self):
        def _apply_weight_norm(m):
            if isinstance(m, (torch.nn.Conv1d, torch.nn.Conv2d)):
                torch.nn.utils.parametrizations.weight_norm(m)

        self.apply(_apply_weight_norm)

    def remove_weight_norm(self):
        def _remove_weight_norm(m):
            try:
                print(f"Weight norm is removed from {m}.")
                remove_parametrizations(m, "weight")
            except ValueError:  # this module didn't have weight norm
                return

        self.apply(_remove_weight_norm)