File size: 25,233 Bytes
9b2107c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
import sys
import time
from dataclasses import dataclass, field
from typing import Dict, List, Tuple

import numpy as np
import torch
import torch.nn.functional as F
from coqpit import Coqpit
from torch import nn
from torch.utils.data import DataLoader
from torch.utils.data.distributed import DistributedSampler

from TTS.tts.utils.visual import plot_spectrogram
from TTS.utils.audio import AudioProcessor
from TTS.utils.audio.numpy_transforms import mulaw_decode
from TTS.utils.io import load_fsspec
from TTS.vocoder.datasets.wavernn_dataset import WaveRNNDataset
from TTS.vocoder.layers.losses import WaveRNNLoss
from TTS.vocoder.models.base_vocoder import BaseVocoder
from TTS.vocoder.utils.distribution import sample_from_discretized_mix_logistic, sample_from_gaussian


def stream(string, variables):
    sys.stdout.write(f"\r{string}" % variables)


# pylint: disable=abstract-method
# relates https://github.com/pytorch/pytorch/issues/42305
class ResBlock(nn.Module):
    def __init__(self, dims):
        super().__init__()
        self.conv1 = nn.Conv1d(dims, dims, kernel_size=1, bias=False)
        self.conv2 = nn.Conv1d(dims, dims, kernel_size=1, bias=False)
        self.batch_norm1 = nn.BatchNorm1d(dims)
        self.batch_norm2 = nn.BatchNorm1d(dims)

    def forward(self, x):
        residual = x
        x = self.conv1(x)
        x = self.batch_norm1(x)
        x = F.relu(x)
        x = self.conv2(x)
        x = self.batch_norm2(x)
        return x + residual


class MelResNet(nn.Module):
    def __init__(self, num_res_blocks, in_dims, compute_dims, res_out_dims, pad):
        super().__init__()
        k_size = pad * 2 + 1
        self.conv_in = nn.Conv1d(in_dims, compute_dims, kernel_size=k_size, bias=False)
        self.batch_norm = nn.BatchNorm1d(compute_dims)
        self.layers = nn.ModuleList()
        for _ in range(num_res_blocks):
            self.layers.append(ResBlock(compute_dims))
        self.conv_out = nn.Conv1d(compute_dims, res_out_dims, kernel_size=1)

    def forward(self, x):
        x = self.conv_in(x)
        x = self.batch_norm(x)
        x = F.relu(x)
        for f in self.layers:
            x = f(x)
        x = self.conv_out(x)
        return x


class Stretch2d(nn.Module):
    def __init__(self, x_scale, y_scale):
        super().__init__()
        self.x_scale = x_scale
        self.y_scale = y_scale

    def forward(self, x):
        b, c, h, w = x.size()
        x = x.unsqueeze(-1).unsqueeze(3)
        x = x.repeat(1, 1, 1, self.y_scale, 1, self.x_scale)
        return x.view(b, c, h * self.y_scale, w * self.x_scale)


class UpsampleNetwork(nn.Module):
    def __init__(
        self,
        feat_dims,
        upsample_scales,
        compute_dims,
        num_res_blocks,
        res_out_dims,
        pad,
        use_aux_net,
    ):
        super().__init__()
        self.total_scale = np.cumproduct(upsample_scales)[-1]
        self.indent = pad * self.total_scale
        self.use_aux_net = use_aux_net
        if use_aux_net:
            self.resnet = MelResNet(num_res_blocks, feat_dims, compute_dims, res_out_dims, pad)
            self.resnet_stretch = Stretch2d(self.total_scale, 1)
        self.up_layers = nn.ModuleList()
        for scale in upsample_scales:
            k_size = (1, scale * 2 + 1)
            padding = (0, scale)
            stretch = Stretch2d(scale, 1)
            conv = nn.Conv2d(1, 1, kernel_size=k_size, padding=padding, bias=False)
            conv.weight.data.fill_(1.0 / k_size[1])
            self.up_layers.append(stretch)
            self.up_layers.append(conv)

    def forward(self, m):
        if self.use_aux_net:
            aux = self.resnet(m).unsqueeze(1)
            aux = self.resnet_stretch(aux)
            aux = aux.squeeze(1)
            aux = aux.transpose(1, 2)
        else:
            aux = None
        m = m.unsqueeze(1)
        for f in self.up_layers:
            m = f(m)
        m = m.squeeze(1)[:, :, self.indent : -self.indent]
        return m.transpose(1, 2), aux


class Upsample(nn.Module):
    def __init__(self, scale, pad, num_res_blocks, feat_dims, compute_dims, res_out_dims, use_aux_net):
        super().__init__()
        self.scale = scale
        self.pad = pad
        self.indent = pad * scale
        self.use_aux_net = use_aux_net
        self.resnet = MelResNet(num_res_blocks, feat_dims, compute_dims, res_out_dims, pad)

    def forward(self, m):
        if self.use_aux_net:
            aux = self.resnet(m)
            aux = torch.nn.functional.interpolate(aux, scale_factor=self.scale, mode="linear", align_corners=True)
            aux = aux.transpose(1, 2)
        else:
            aux = None
        m = torch.nn.functional.interpolate(m, scale_factor=self.scale, mode="linear", align_corners=True)
        m = m[:, :, self.indent : -self.indent]
        m = m * 0.045  # empirically found

        return m.transpose(1, 2), aux


@dataclass
class WavernnArgs(Coqpit):
    """🐸 WaveRNN model arguments.

    rnn_dims (int):
        Number of hidden channels in RNN layers. Defaults to 512.
    fc_dims (int):
        Number of hidden channels in fully-conntected layers. Defaults to 512.
    compute_dims (int):
        Number of hidden channels in the feature ResNet. Defaults to 128.
    res_out_dim (int):
        Number of hidden channels in the feature ResNet output. Defaults to 128.
    num_res_blocks (int):
        Number of residual blocks in the ResNet. Defaults to 10.
    use_aux_net (bool):
        enable/disable the feature ResNet. Defaults to True.
    use_upsample_net (bool):
        enable/ disable the upsampling networl. If False, basic upsampling is used. Defaults to True.
    upsample_factors (list):
        Upsampling factors. The multiply of the values must match the `hop_length`. Defaults to ```[4, 8, 8]```.
    mode (str):
        Output mode of the WaveRNN vocoder. `mold` for Mixture of Logistic Distribution, `gauss` for a single
        Gaussian Distribution and `bits` for quantized bits as the model's output.
    mulaw (bool):
        enable / disable the use of Mulaw quantization for training. Only applicable if `mode == 'bits'`. Defaults
        to `True`.
    pad (int):
            Padding applied to the input feature frames against the convolution layers of the feature network.
            Defaults to 2.
    """

    rnn_dims: int = 512
    fc_dims: int = 512
    compute_dims: int = 128
    res_out_dims: int = 128
    num_res_blocks: int = 10
    use_aux_net: bool = True
    use_upsample_net: bool = True
    upsample_factors: List[int] = field(default_factory=lambda: [4, 8, 8])
    mode: str = "mold"  # mold [string], gauss [string], bits [int]
    mulaw: bool = True  # apply mulaw if mode is bits
    pad: int = 2
    feat_dims: int = 80


class Wavernn(BaseVocoder):
    def __init__(self, config: Coqpit):
        """🐸 WaveRNN model.
        Original paper - https://arxiv.org/abs/1802.08435
        Official implementation - https://github.com/fatchord/WaveRNN

        Args:
            config (Coqpit): [description]

        Raises:
            RuntimeError: [description]

        Examples:
            >>> from TTS.vocoder.configs import WavernnConfig
            >>> config = WavernnConfig()
            >>> model = Wavernn(config)

        Paper Abstract:
            Sequential models achieve state-of-the-art results in audio, visual and textual domains with respect to
            both estimating the data distribution and generating high-quality samples. Efficient sampling for this
            class of models has however remained an elusive problem. With a focus on text-to-speech synthesis, we
            describe a set of general techniques for reducing sampling time while maintaining high output quality.
            We first describe a single-layer recurrent neural network, the WaveRNN, with a dual softmax layer that
            matches the quality of the state-of-the-art WaveNet model. The compact form of the network makes it
            possible to generate 24kHz 16-bit audio 4x faster than real time on a GPU. Second, we apply a weight
            pruning technique to reduce the number of weights in the WaveRNN. We find that, for a constant number of
            parameters, large sparse networks perform better than small dense networks and this relationship holds for
            sparsity levels beyond 96%. The small number of weights in a Sparse WaveRNN makes it possible to sample
            high-fidelity audio on a mobile CPU in real time. Finally, we propose a new generation scheme based on
            subscaling that folds a long sequence into a batch of shorter sequences and allows one to generate multiple
            samples at once. The Subscale WaveRNN produces 16 samples per step without loss of quality and offers an
            orthogonal method for increasing sampling efficiency.
        """
        super().__init__(config)

        if isinstance(self.args.mode, int):
            self.n_classes = 2**self.args.mode
        elif self.args.mode == "mold":
            self.n_classes = 3 * 10
        elif self.args.mode == "gauss":
            self.n_classes = 2
        else:
            raise RuntimeError("Unknown model mode value - ", self.args.mode)

        self.ap = AudioProcessor(**config.audio.to_dict())
        self.aux_dims = self.args.res_out_dims // 4

        if self.args.use_upsample_net:
            assert (
                np.cumproduct(self.args.upsample_factors)[-1] == config.audio.hop_length
            ), " [!] upsample scales needs to be equal to hop_length"
            self.upsample = UpsampleNetwork(
                self.args.feat_dims,
                self.args.upsample_factors,
                self.args.compute_dims,
                self.args.num_res_blocks,
                self.args.res_out_dims,
                self.args.pad,
                self.args.use_aux_net,
            )
        else:
            self.upsample = Upsample(
                config.audio.hop_length,
                self.args.pad,
                self.args.num_res_blocks,
                self.args.feat_dims,
                self.args.compute_dims,
                self.args.res_out_dims,
                self.args.use_aux_net,
            )
        if self.args.use_aux_net:
            self.I = nn.Linear(self.args.feat_dims + self.aux_dims + 1, self.args.rnn_dims)
            self.rnn1 = nn.GRU(self.args.rnn_dims, self.args.rnn_dims, batch_first=True)
            self.rnn2 = nn.GRU(self.args.rnn_dims + self.aux_dims, self.args.rnn_dims, batch_first=True)
            self.fc1 = nn.Linear(self.args.rnn_dims + self.aux_dims, self.args.fc_dims)
            self.fc2 = nn.Linear(self.args.fc_dims + self.aux_dims, self.args.fc_dims)
            self.fc3 = nn.Linear(self.args.fc_dims, self.n_classes)
        else:
            self.I = nn.Linear(self.args.feat_dims + 1, self.args.rnn_dims)
            self.rnn1 = nn.GRU(self.args.rnn_dims, self.args.rnn_dims, batch_first=True)
            self.rnn2 = nn.GRU(self.args.rnn_dims, self.args.rnn_dims, batch_first=True)
            self.fc1 = nn.Linear(self.args.rnn_dims, self.args.fc_dims)
            self.fc2 = nn.Linear(self.args.fc_dims, self.args.fc_dims)
            self.fc3 = nn.Linear(self.args.fc_dims, self.n_classes)

    def forward(self, x, mels):
        bsize = x.size(0)
        h1 = torch.zeros(1, bsize, self.args.rnn_dims).to(x.device)
        h2 = torch.zeros(1, bsize, self.args.rnn_dims).to(x.device)
        mels, aux = self.upsample(mels)

        if self.args.use_aux_net:
            aux_idx = [self.aux_dims * i for i in range(5)]
            a1 = aux[:, :, aux_idx[0] : aux_idx[1]]
            a2 = aux[:, :, aux_idx[1] : aux_idx[2]]
            a3 = aux[:, :, aux_idx[2] : aux_idx[3]]
            a4 = aux[:, :, aux_idx[3] : aux_idx[4]]

        x = (
            torch.cat([x.unsqueeze(-1), mels, a1], dim=2)
            if self.args.use_aux_net
            else torch.cat([x.unsqueeze(-1), mels], dim=2)
        )
        x = self.I(x)
        res = x
        self.rnn1.flatten_parameters()
        x, _ = self.rnn1(x, h1)

        x = x + res
        res = x
        x = torch.cat([x, a2], dim=2) if self.args.use_aux_net else x
        self.rnn2.flatten_parameters()
        x, _ = self.rnn2(x, h2)

        x = x + res
        x = torch.cat([x, a3], dim=2) if self.args.use_aux_net else x
        x = F.relu(self.fc1(x))

        x = torch.cat([x, a4], dim=2) if self.args.use_aux_net else x
        x = F.relu(self.fc2(x))
        return self.fc3(x)

    def inference(self, mels, batched=None, target=None, overlap=None):
        self.eval()
        output = []
        start = time.time()
        rnn1 = self.get_gru_cell(self.rnn1)
        rnn2 = self.get_gru_cell(self.rnn2)

        with torch.no_grad():
            if isinstance(mels, np.ndarray):
                mels = torch.FloatTensor(mels).to(str(next(self.parameters()).device))

            if mels.ndim == 2:
                mels = mels.unsqueeze(0)
            wave_len = (mels.size(-1) - 1) * self.config.audio.hop_length

            mels = self.pad_tensor(mels.transpose(1, 2), pad=self.args.pad, side="both")
            mels, aux = self.upsample(mels.transpose(1, 2))

            if batched:
                mels = self.fold_with_overlap(mels, target, overlap)
                if aux is not None:
                    aux = self.fold_with_overlap(aux, target, overlap)

            b_size, seq_len, _ = mels.size()

            h1 = torch.zeros(b_size, self.args.rnn_dims).type_as(mels)
            h2 = torch.zeros(b_size, self.args.rnn_dims).type_as(mels)
            x = torch.zeros(b_size, 1).type_as(mels)

            if self.args.use_aux_net:
                d = self.aux_dims
                aux_split = [aux[:, :, d * i : d * (i + 1)] for i in range(4)]

            for i in range(seq_len):
                m_t = mels[:, i, :]

                if self.args.use_aux_net:
                    a1_t, a2_t, a3_t, a4_t = (a[:, i, :] for a in aux_split)

                x = torch.cat([x, m_t, a1_t], dim=1) if self.args.use_aux_net else torch.cat([x, m_t], dim=1)
                x = self.I(x)
                h1 = rnn1(x, h1)

                x = x + h1
                inp = torch.cat([x, a2_t], dim=1) if self.args.use_aux_net else x
                h2 = rnn2(inp, h2)

                x = x + h2
                x = torch.cat([x, a3_t], dim=1) if self.args.use_aux_net else x
                x = F.relu(self.fc1(x))

                x = torch.cat([x, a4_t], dim=1) if self.args.use_aux_net else x
                x = F.relu(self.fc2(x))

                logits = self.fc3(x)

                if self.args.mode == "mold":
                    sample = sample_from_discretized_mix_logistic(logits.unsqueeze(0).transpose(1, 2))
                    output.append(sample.view(-1))
                    x = sample.transpose(0, 1).type_as(mels)
                elif self.args.mode == "gauss":
                    sample = sample_from_gaussian(logits.unsqueeze(0).transpose(1, 2))
                    output.append(sample.view(-1))
                    x = sample.transpose(0, 1).type_as(mels)
                elif isinstance(self.args.mode, int):
                    posterior = F.softmax(logits, dim=1)
                    distrib = torch.distributions.Categorical(posterior)

                    sample = 2 * distrib.sample().float() / (self.n_classes - 1.0) - 1.0
                    output.append(sample)
                    x = sample.unsqueeze(-1)
                else:
                    raise RuntimeError("Unknown model mode value - ", self.args.mode)

                if i % 100 == 0:
                    self.gen_display(i, seq_len, b_size, start)

        output = torch.stack(output).transpose(0, 1)
        output = output.cpu()
        if batched:
            output = output.numpy()
            output = output.astype(np.float64)

            output = self.xfade_and_unfold(output, target, overlap)
        else:
            output = output[0]

        if self.args.mulaw and isinstance(self.args.mode, int):
            output = mulaw_decode(wav=output, mulaw_qc=self.args.mode)

        # Fade-out at the end to avoid signal cutting out suddenly
        fade_out = np.linspace(1, 0, 20 * self.config.audio.hop_length)
        output = output[:wave_len]

        if wave_len > len(fade_out):
            output[-20 * self.config.audio.hop_length :] *= fade_out

        self.train()
        return output

    def gen_display(self, i, seq_len, b_size, start):
        gen_rate = (i + 1) / (time.time() - start) * b_size / 1000
        realtime_ratio = gen_rate * 1000 / self.config.audio.sample_rate
        stream(
            "%i/%i -- batch_size: %i -- gen_rate: %.1f kHz -- x_realtime: %.1f  ",
            (i * b_size, seq_len * b_size, b_size, gen_rate, realtime_ratio),
        )

    def fold_with_overlap(self, x, target, overlap):
        """Fold the tensor with overlap for quick batched inference.
            Overlap will be used for crossfading in xfade_and_unfold()
        Args:
            x (tensor)    : Upsampled conditioning features.
                            shape=(1, timesteps, features)
            target (int)  : Target timesteps for each index of batch
            overlap (int) : Timesteps for both xfade and rnn warmup
        Return:
            (tensor) : shape=(num_folds, target + 2 * overlap, features)
        Details:
            x = [[h1, h2, ... hn]]
            Where each h is a vector of conditioning features
            Eg: target=2, overlap=1 with x.size(1)=10
            folded = [[h1, h2, h3, h4],
                      [h4, h5, h6, h7],
                      [h7, h8, h9, h10]]
        """

        _, total_len, features = x.size()

        # Calculate variables needed
        num_folds = (total_len - overlap) // (target + overlap)
        extended_len = num_folds * (overlap + target) + overlap
        remaining = total_len - extended_len

        # Pad if some time steps poking out
        if remaining != 0:
            num_folds += 1
            padding = target + 2 * overlap - remaining
            x = self.pad_tensor(x, padding, side="after")

        folded = torch.zeros(num_folds, target + 2 * overlap, features).to(x.device)

        # Get the values for the folded tensor
        for i in range(num_folds):
            start = i * (target + overlap)
            end = start + target + 2 * overlap
            folded[i] = x[:, start:end, :]

        return folded

    @staticmethod
    def get_gru_cell(gru):
        gru_cell = nn.GRUCell(gru.input_size, gru.hidden_size)
        gru_cell.weight_hh.data = gru.weight_hh_l0.data
        gru_cell.weight_ih.data = gru.weight_ih_l0.data
        gru_cell.bias_hh.data = gru.bias_hh_l0.data
        gru_cell.bias_ih.data = gru.bias_ih_l0.data
        return gru_cell

    @staticmethod
    def pad_tensor(x, pad, side="both"):
        # NB - this is just a quick method i need right now
        # i.e., it won't generalise to other shapes/dims
        b, t, c = x.size()
        total = t + 2 * pad if side == "both" else t + pad
        padded = torch.zeros(b, total, c).to(x.device)
        if side in ("before", "both"):
            padded[:, pad : pad + t, :] = x
        elif side == "after":
            padded[:, :t, :] = x
        return padded

    @staticmethod
    def xfade_and_unfold(y, target, overlap):
        """Applies a crossfade and unfolds into a 1d array.
        Args:
            y (ndarry)    : Batched sequences of audio samples
                            shape=(num_folds, target + 2 * overlap)
                            dtype=np.float64
            overlap (int) : Timesteps for both xfade and rnn warmup
        Return:
            (ndarry) : audio samples in a 1d array
                       shape=(total_len)
                       dtype=np.float64
        Details:
            y = [[seq1],
                 [seq2],
                 [seq3]]
            Apply a gain envelope at both ends of the sequences
            y = [[seq1_in, seq1_target, seq1_out],
                 [seq2_in, seq2_target, seq2_out],
                 [seq3_in, seq3_target, seq3_out]]
            Stagger and add up the groups of samples:
            [seq1_in, seq1_target, (seq1_out + seq2_in), seq2_target, ...]
        """

        num_folds, length = y.shape
        target = length - 2 * overlap
        total_len = num_folds * (target + overlap) + overlap

        # Need some silence for the rnn warmup
        silence_len = overlap // 2
        fade_len = overlap - silence_len
        silence = np.zeros((silence_len), dtype=np.float64)

        # Equal power crossfade
        t = np.linspace(-1, 1, fade_len, dtype=np.float64)
        fade_in = np.sqrt(0.5 * (1 + t))
        fade_out = np.sqrt(0.5 * (1 - t))

        # Concat the silence to the fades
        fade_in = np.concatenate([silence, fade_in])
        fade_out = np.concatenate([fade_out, silence])

        # Apply the gain to the overlap samples
        y[:, :overlap] *= fade_in
        y[:, -overlap:] *= fade_out

        unfolded = np.zeros((total_len), dtype=np.float64)

        # Loop to add up all the samples
        for i in range(num_folds):
            start = i * (target + overlap)
            end = start + target + 2 * overlap
            unfolded[start:end] += y[i]

        return unfolded

    def load_checkpoint(
        self, config, checkpoint_path, eval=False, cache=False
    ):  # pylint: disable=unused-argument, redefined-builtin
        state = load_fsspec(checkpoint_path, map_location=torch.device("cpu"), cache=cache)
        self.load_state_dict(state["model"])
        if eval:
            self.eval()
            assert not self.training

    def train_step(self, batch: Dict, criterion: Dict) -> Tuple[Dict, Dict]:
        mels = batch["input"]
        waveform = batch["waveform"]
        waveform_coarse = batch["waveform_coarse"]

        y_hat = self.forward(waveform, mels)
        if isinstance(self.args.mode, int):
            y_hat = y_hat.transpose(1, 2).unsqueeze(-1)
        else:
            waveform_coarse = waveform_coarse.float()
        waveform_coarse = waveform_coarse.unsqueeze(-1)
        # compute losses
        loss_dict = criterion(y_hat, waveform_coarse)
        return {"model_output": y_hat}, loss_dict

    def eval_step(self, batch: Dict, criterion: Dict) -> Tuple[Dict, Dict]:
        return self.train_step(batch, criterion)

    @torch.no_grad()
    def test(
        self, assets: Dict, test_loader: "DataLoader", output: Dict  # pylint: disable=unused-argument
    ) -> Tuple[Dict, Dict]:
        ap = self.ap
        figures = {}
        audios = {}
        samples = test_loader.dataset.load_test_samples(1)
        for idx, sample in enumerate(samples):
            x = torch.FloatTensor(sample[0])
            x = x.to(next(self.parameters()).device)
            y_hat = self.inference(x, self.config.batched, self.config.target_samples, self.config.overlap_samples)
            x_hat = ap.melspectrogram(y_hat)
            figures.update(
                {
                    f"test_{idx}/ground_truth": plot_spectrogram(x.T),
                    f"test_{idx}/prediction": plot_spectrogram(x_hat.T),
                }
            )
            audios.update({f"test_{idx}/audio": y_hat})
            # audios.update({f"real_{idx}/audio": y_hat})
        return figures, audios

    def test_log(
        self, outputs: Dict, logger: "Logger", assets: Dict, steps: int  # pylint: disable=unused-argument
    ) -> Tuple[Dict, np.ndarray]:
        figures, audios = outputs
        logger.eval_figures(steps, figures)
        logger.eval_audios(steps, audios, self.ap.sample_rate)

    @staticmethod
    def format_batch(batch: Dict) -> Dict:
        waveform = batch[0]
        mels = batch[1]
        waveform_coarse = batch[2]
        return {"input": mels, "waveform": waveform, "waveform_coarse": waveform_coarse}

    def get_data_loader(  # pylint: disable=no-self-use
        self,
        config: Coqpit,
        assets: Dict,
        is_eval: True,
        samples: List,
        verbose: bool,
        num_gpus: int,
    ):
        ap = self.ap
        dataset = WaveRNNDataset(
            ap=ap,
            items=samples,
            seq_len=config.seq_len,
            hop_len=ap.hop_length,
            pad=config.model_args.pad,
            mode=config.model_args.mode,
            mulaw=config.model_args.mulaw,
            is_training=not is_eval,
            verbose=verbose,
        )
        sampler = DistributedSampler(dataset, shuffle=True) if num_gpus > 1 else None
        loader = DataLoader(
            dataset,
            batch_size=1 if is_eval else config.batch_size,
            shuffle=num_gpus == 0,
            collate_fn=dataset.collate,
            sampler=sampler,
            num_workers=config.num_eval_loader_workers if is_eval else config.num_loader_workers,
            pin_memory=True,
        )
        return loader

    def get_criterion(self):
        # define train functions
        return WaveRNNLoss(self.args.mode)

    @staticmethod
    def init_from_config(config: "WavernnConfig"):
        return Wavernn(config)