File size: 17,806 Bytes
9b2107c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
### credit: https://github.com/dunky11/voicesmith
import math
from typing import Tuple

import torch
import torch.nn as nn  # pylint: disable=consider-using-from-import
import torch.nn.functional as F

from TTS.tts.layers.delightful_tts.conv_layers import Conv1dGLU, DepthWiseConv1d, PointwiseConv1d
from TTS.tts.layers.delightful_tts.networks import GLUActivation


def calc_same_padding(kernel_size: int) -> Tuple[int, int]:
    pad = kernel_size // 2
    return (pad, pad - (kernel_size + 1) % 2)


class Conformer(nn.Module):
    def __init__(
        self,
        dim: int,
        n_layers: int,
        n_heads: int,
        speaker_embedding_dim: int,
        p_dropout: float,
        kernel_size_conv_mod: int,
        lrelu_slope: float,
    ):
        """
        A Transformer variant that integrates both CNNs and Transformers components.
        Conformer proposes a novel combination of self-attention and convolution, in which self-attention
        learns the global interaction while the convolutions efficiently capture the local correlations.

        Args:
            dim (int): Number of the dimensions for the model.
            n_layers (int): Number of model layers.
            n_heads (int): The number of attention heads.
            speaker_embedding_dim (int): Number of speaker embedding dimensions.
            p_dropout (float): Probabilty of dropout.
            kernel_size_conv_mod (int): Size of kernels for convolution modules.

        Inputs: inputs, mask
            - **inputs** (batch, time, dim): Tensor containing input vector
            - **encoding** (batch, time, dim): Positional embedding tensor
            - **mask** (batch, 1, time2) or (batch, time1, time2): Tensor containing indices to be masked
        Returns:
            - **outputs** (batch, time, dim): Tensor produced by Conformer Encoder.
        """
        super().__init__()
        d_k = d_v = dim // n_heads
        self.layer_stack = nn.ModuleList(
            [
                ConformerBlock(
                    dim,
                    n_heads,
                    d_k,
                    d_v,
                    kernel_size_conv_mod=kernel_size_conv_mod,
                    dropout=p_dropout,
                    speaker_embedding_dim=speaker_embedding_dim,
                    lrelu_slope=lrelu_slope,
                )
                for _ in range(n_layers)
            ]
        )

    def forward(
        self,
        x: torch.Tensor,
        mask: torch.Tensor,
        speaker_embedding: torch.Tensor,
        encoding: torch.Tensor,
    ) -> torch.Tensor:
        """
        Shapes:
            - x: :math:`[B, T_src, C]`
            - mask: :math: `[B]`
            - speaker_embedding: :math: `[B, C]`
            - encoding: :math: `[B, T_max2, C]`
        """

        attn_mask = mask.view((mask.shape[0], 1, 1, mask.shape[1]))
        for enc_layer in self.layer_stack:
            x = enc_layer(
                x,
                mask=mask,
                slf_attn_mask=attn_mask,
                speaker_embedding=speaker_embedding,
                encoding=encoding,
            )
        return x


class ConformerBlock(torch.nn.Module):
    def __init__(
        self,
        d_model: int,
        n_head: int,
        d_k: int,  # pylint: disable=unused-argument
        d_v: int,  # pylint: disable=unused-argument
        kernel_size_conv_mod: int,
        speaker_embedding_dim: int,
        dropout: float,
        lrelu_slope: float = 0.3,
    ):
        """
        A Conformer block is composed of four modules stacked together,
        A feed-forward module, a self-attention module, a convolution module,
        and a second feed-forward module in the end. The block starts with two Feed forward
        modules sandwiching the Multi-Headed Self-Attention module and the Conv module.

        Args:
            d_model (int): The dimension of model
            n_head (int): The number of attention heads.
            kernel_size_conv_mod (int): Size of kernels for convolution modules.
            speaker_embedding_dim (int): Number of speaker embedding dimensions.
            emotion_embedding_dim (int): Number of emotion embedding dimensions.
            dropout (float): Probabilty of dropout.

        Inputs: inputs, mask
            - **inputs** (batch, time, dim): Tensor containing input vector
            - **encoding** (batch, time, dim): Positional embedding tensor
            - **slf_attn_mask** (batch, 1, 1, time1): Tensor containing indices to be masked in self attention module
            - **mask** (batch, 1, time2) or (batch, time1, time2): Tensor containing indices to be masked
        Returns:
            - **outputs** (batch, time, dim): Tensor produced by the Conformer Block.
        """
        super().__init__()
        if isinstance(speaker_embedding_dim, int):
            self.conditioning = Conv1dGLU(
                d_model=d_model,
                kernel_size=kernel_size_conv_mod,
                padding=kernel_size_conv_mod // 2,
                embedding_dim=speaker_embedding_dim,
            )

        self.ff = FeedForward(d_model=d_model, dropout=dropout, kernel_size=3, lrelu_slope=lrelu_slope)
        self.conformer_conv_1 = ConformerConvModule(
            d_model, kernel_size=kernel_size_conv_mod, dropout=dropout, lrelu_slope=lrelu_slope
        )
        self.ln = nn.LayerNorm(d_model)
        self.slf_attn = ConformerMultiHeadedSelfAttention(d_model=d_model, num_heads=n_head, dropout_p=dropout)
        self.conformer_conv_2 = ConformerConvModule(
            d_model, kernel_size=kernel_size_conv_mod, dropout=dropout, lrelu_slope=lrelu_slope
        )

    def forward(
        self,
        x: torch.Tensor,
        speaker_embedding: torch.Tensor,
        mask: torch.Tensor,
        slf_attn_mask: torch.Tensor,
        encoding: torch.Tensor,
    ) -> torch.Tensor:
        """
        Shapes:
            - x: :math:`[B, T_src, C]`
            - mask: :math: `[B]`
            - slf_attn_mask: :math: `[B, 1, 1, T_src]`
            - speaker_embedding: :math: `[B, C]`
            - emotion_embedding: :math: `[B, C]`
            - encoding: :math: `[B, T_max2, C]`
        """
        if speaker_embedding is not None:
            x = self.conditioning(x, embeddings=speaker_embedding)
        x = self.ff(x) + x
        x = self.conformer_conv_1(x) + x
        res = x
        x = self.ln(x)
        x, _ = self.slf_attn(query=x, key=x, value=x, mask=slf_attn_mask, encoding=encoding)
        x = x + res
        x = x.masked_fill(mask.unsqueeze(-1), 0)

        x = self.conformer_conv_2(x) + x
        return x


class FeedForward(nn.Module):
    def __init__(
        self,
        d_model: int,
        kernel_size: int,
        dropout: float,
        lrelu_slope: float,
        expansion_factor: int = 4,
    ):
        """
        Feed Forward module for conformer block.

        Args:
            d_model (int): The dimension of model.
            kernel_size (int): Size of the kernels for conv layers.
            dropout (float): probability of dropout.
            expansion_factor (int): The factor by which to project the number of channels.
            lrelu_slope (int): the negative slope factor for the leaky relu activation.

        Inputs: inputs
            - **inputs** (batch, time, dim): Tensor containing input vector
        Returns:
            - **outputs** (batch, time, dim): Tensor produced by the feed forward module.
        """
        super().__init__()
        self.dropout = nn.Dropout(dropout)
        self.ln = nn.LayerNorm(d_model)
        self.conv_1 = nn.Conv1d(
            d_model,
            d_model * expansion_factor,
            kernel_size=kernel_size,
            padding=kernel_size // 2,
        )
        self.act = nn.LeakyReLU(lrelu_slope)
        self.conv_2 = nn.Conv1d(d_model * expansion_factor, d_model, kernel_size=1)

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        """
        Shapes:
            x: :math: `[B, T, C]`
        """
        x = self.ln(x)
        x = x.permute((0, 2, 1))
        x = self.conv_1(x)
        x = x.permute((0, 2, 1))
        x = self.act(x)
        x = self.dropout(x)
        x = x.permute((0, 2, 1))
        x = self.conv_2(x)
        x = x.permute((0, 2, 1))
        x = self.dropout(x)
        x = 0.5 * x
        return x


class ConformerConvModule(nn.Module):
    def __init__(
        self,
        d_model: int,
        expansion_factor: int = 2,
        kernel_size: int = 7,
        dropout: float = 0.1,
        lrelu_slope: float = 0.3,
    ):
        """
        Convolution module for conformer. Starts with a gating machanism.
        a pointwise convolution and a gated linear unit (GLU). This is followed
        by a single 1-D depthwise convolution layer. Batchnorm is deployed just after the convolution
        to help with training. it also contains an expansion factor to project the number of channels.

        Args:
            d_model (int): The dimension of model.
            expansion_factor (int): The factor by which to project the number of channels.
            kernel_size (int): Size of kernels for convolution modules.
            dropout (float): Probabilty of dropout.
            lrelu_slope (float): The slope coefficient for leaky relu activation.

        Inputs: inputs
            - **inputs** (batch, time, dim): Tensor containing input vector
        Returns:
            - **outputs** (batch, time, dim): Tensor produced by the conv module.

        """
        super().__init__()
        inner_dim = d_model * expansion_factor
        self.ln_1 = nn.LayerNorm(d_model)
        self.conv_1 = PointwiseConv1d(d_model, inner_dim * 2)
        self.conv_act = GLUActivation(slope=lrelu_slope)
        self.depthwise = DepthWiseConv1d(
            inner_dim,
            inner_dim,
            kernel_size=kernel_size,
            padding=calc_same_padding(kernel_size)[0],
        )
        self.ln_2 = nn.GroupNorm(1, inner_dim)
        self.activation = nn.LeakyReLU(lrelu_slope)
        self.conv_2 = PointwiseConv1d(inner_dim, d_model)
        self.dropout = nn.Dropout(dropout)

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        """
        Shapes:
            x: :math: `[B, T, C]`
        """
        x = self.ln_1(x)
        x = x.permute(0, 2, 1)
        x = self.conv_1(x)
        x = self.conv_act(x)
        x = self.depthwise(x)
        x = self.ln_2(x)
        x = self.activation(x)
        x = self.conv_2(x)
        x = x.permute(0, 2, 1)
        x = self.dropout(x)
        return x


class ConformerMultiHeadedSelfAttention(nn.Module):
    """
    Conformer employ multi-headed self-attention (MHSA) while integrating an important technique from Transformer-XL,
    the relative sinusoidal positional encoding scheme. The relative positional encoding allows the self-attention
    module to generalize better on different input length and the resulting encoder is more robust to the variance of
    the utterance length. Conformer use prenorm residual units with dropout which helps training
    and regularizing deeper models.
    Args:
        d_model (int): The dimension of model
        num_heads (int): The number of attention heads.
        dropout_p (float): probability of dropout
    Inputs: inputs, mask
        - **inputs** (batch, time, dim): Tensor containing input vector
        - **mask** (batch, 1, time2) or (batch, time1, time2): Tensor containing indices to be masked
    Returns:
        - **outputs** (batch, time, dim): Tensor produces by relative multi headed self attention module.
    """

    def __init__(self, d_model: int, num_heads: int, dropout_p: float):
        super().__init__()
        self.attention = RelativeMultiHeadAttention(d_model=d_model, num_heads=num_heads)
        self.dropout = nn.Dropout(p=dropout_p)

    def forward(
        self,
        query: torch.Tensor,
        key: torch.Tensor,
        value: torch.Tensor,
        mask: torch.Tensor,
        encoding: torch.Tensor,
    ) -> Tuple[torch.Tensor, torch.Tensor]:
        batch_size, seq_length, _ = key.size()  # pylint: disable=unused-variable
        encoding = encoding[:, : key.shape[1]]
        encoding = encoding.repeat(batch_size, 1, 1)
        outputs, attn = self.attention(query, key, value, pos_embedding=encoding, mask=mask)
        outputs = self.dropout(outputs)
        return outputs, attn


class RelativeMultiHeadAttention(nn.Module):
    """
    Multi-head attention with relative positional encoding.
    This concept was proposed in the "Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context"
    Args:
        d_model (int): The dimension of model
        num_heads (int): The number of attention heads.
    Inputs: query, key, value, pos_embedding, mask
        - **query** (batch, time, dim): Tensor containing query vector
        - **key** (batch, time, dim): Tensor containing key vector
        - **value** (batch, time, dim): Tensor containing value vector
        - **pos_embedding** (batch, time, dim): Positional embedding tensor
        - **mask** (batch, 1, time2) or (batch, time1, time2): Tensor containing indices to be masked
    Returns:
        - **outputs**: Tensor produces by relative multi head attention module.
    """

    def __init__(
        self,
        d_model: int = 512,
        num_heads: int = 16,
    ):
        super().__init__()
        assert d_model % num_heads == 0, "d_model % num_heads should be zero."
        self.d_model = d_model
        self.d_head = int(d_model / num_heads)
        self.num_heads = num_heads
        self.sqrt_dim = math.sqrt(d_model)

        self.query_proj = nn.Linear(d_model, d_model)
        self.key_proj = nn.Linear(d_model, d_model, bias=False)
        self.value_proj = nn.Linear(d_model, d_model, bias=False)
        self.pos_proj = nn.Linear(d_model, d_model, bias=False)

        self.u_bias = nn.Parameter(torch.Tensor(self.num_heads, self.d_head))
        self.v_bias = nn.Parameter(torch.Tensor(self.num_heads, self.d_head))
        torch.nn.init.xavier_uniform_(self.u_bias)
        torch.nn.init.xavier_uniform_(self.v_bias)
        self.out_proj = nn.Linear(d_model, d_model)

    def forward(
        self,
        query: torch.Tensor,
        key: torch.Tensor,
        value: torch.Tensor,
        pos_embedding: torch.Tensor,
        mask: torch.Tensor,
    ) -> Tuple[torch.Tensor, torch.Tensor]:
        batch_size = query.shape[0]
        query = self.query_proj(query).view(batch_size, -1, self.num_heads, self.d_head)
        key = self.key_proj(key).view(batch_size, -1, self.num_heads, self.d_head).permute(0, 2, 1, 3)
        value = self.value_proj(value).view(batch_size, -1, self.num_heads, self.d_head).permute(0, 2, 1, 3)
        pos_embedding = self.pos_proj(pos_embedding).view(batch_size, -1, self.num_heads, self.d_head)
        u_bias = self.u_bias.expand_as(query)
        v_bias = self.v_bias.expand_as(query)
        a = (query + u_bias).transpose(1, 2)
        content_score = a @ key.transpose(2, 3)
        b = (query + v_bias).transpose(1, 2)
        pos_score = b @ pos_embedding.permute(0, 2, 3, 1)
        pos_score = self._relative_shift(pos_score)

        score = content_score + pos_score
        score = score * (1.0 / self.sqrt_dim)

        score.masked_fill_(mask, -1e9)

        attn = F.softmax(score, -1)

        context = (attn @ value).transpose(1, 2)
        context = context.contiguous().view(batch_size, -1, self.d_model)

        return self.out_proj(context), attn

    def _relative_shift(self, pos_score: torch.Tensor) -> torch.Tensor:  # pylint: disable=no-self-use
        batch_size, num_heads, seq_length1, seq_length2 = pos_score.size()
        zeros = torch.zeros((batch_size, num_heads, seq_length1, 1), device=pos_score.device)
        padded_pos_score = torch.cat([zeros, pos_score], dim=-1)
        padded_pos_score = padded_pos_score.view(batch_size, num_heads, seq_length2 + 1, seq_length1)
        pos_score = padded_pos_score[:, :, 1:].view_as(pos_score)
        return pos_score


class MultiHeadAttention(nn.Module):
    """
    input:
        query --- [N, T_q, query_dim]
        key --- [N, T_k, key_dim]
    output:
        out --- [N, T_q, num_units]
    """

    def __init__(self, query_dim: int, key_dim: int, num_units: int, num_heads: int):
        super().__init__()
        self.num_units = num_units
        self.num_heads = num_heads
        self.key_dim = key_dim

        self.W_query = nn.Linear(in_features=query_dim, out_features=num_units, bias=False)
        self.W_key = nn.Linear(in_features=key_dim, out_features=num_units, bias=False)
        self.W_value = nn.Linear(in_features=key_dim, out_features=num_units, bias=False)

    def forward(self, query: torch.Tensor, key: torch.Tensor) -> torch.Tensor:
        querys = self.W_query(query)  # [N, T_q, num_units]
        keys = self.W_key(key)  # [N, T_k, num_units]
        values = self.W_value(key)
        split_size = self.num_units // self.num_heads
        querys = torch.stack(torch.split(querys, split_size, dim=2), dim=0)  # [h, N, T_q, num_units/h]
        keys = torch.stack(torch.split(keys, split_size, dim=2), dim=0)  # [h, N, T_k, num_units/h]
        values = torch.stack(torch.split(values, split_size, dim=2), dim=0)  # [h, N, T_k, num_units/h]
        # score = softmax(QK^T / (d_k ** 0.5))
        scores = torch.matmul(querys, keys.transpose(2, 3))  # [h, N, T_q, T_k]
        scores = scores / (self.key_dim**0.5)
        scores = F.softmax(scores, dim=3)
        # out = score * V
        out = torch.matmul(scores, values)  # [h, N, T_q, num_units/h]
        out = torch.cat(torch.split(out, 1, dim=0), dim=3).squeeze(0)  # [N, T_q, num_units]
        return out