Spaces:
Running
Running
File size: 8,297 Bytes
9b2107c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 |
import torch
from torch import nn
from TTS.tts.layers.generic.res_conv_bn import Conv1dBN, Conv1dBNBlock, ResidualConv1dBNBlock
from TTS.tts.layers.generic.transformer import FFTransformerBlock
from TTS.tts.layers.generic.wavenet import WNBlocks
from TTS.tts.layers.glow_tts.transformer import RelativePositionTransformer
class WaveNetDecoder(nn.Module):
"""WaveNet based decoder with a prenet and a postnet.
prenet: conv1d_1x1
postnet: 3 x [conv1d_1x1 -> relu] -> conv1d_1x1
TODO: Integrate speaker conditioning vector.
Note:
default wavenet parameters;
params = {
"num_blocks": 12,
"hidden_channels":192,
"kernel_size": 5,
"dilation_rate": 1,
"num_layers": 4,
"dropout_p": 0.05
}
Args:
in_channels (int): number of input channels.
out_channels (int): number of output channels.
hidden_channels (int): number of hidden channels for prenet and postnet.
params (dict): dictionary for residual convolutional blocks.
"""
def __init__(self, in_channels, out_channels, hidden_channels, c_in_channels, params):
super().__init__()
# prenet
self.prenet = torch.nn.Conv1d(in_channels, params["hidden_channels"], 1)
# wavenet layers
self.wn = WNBlocks(params["hidden_channels"], c_in_channels=c_in_channels, **params)
# postnet
self.postnet = [
torch.nn.Conv1d(params["hidden_channels"], hidden_channels, 1),
torch.nn.ReLU(),
torch.nn.Conv1d(hidden_channels, hidden_channels, 1),
torch.nn.ReLU(),
torch.nn.Conv1d(hidden_channels, hidden_channels, 1),
torch.nn.ReLU(),
torch.nn.Conv1d(hidden_channels, out_channels, 1),
]
self.postnet = nn.Sequential(*self.postnet)
def forward(self, x, x_mask=None, g=None):
x = self.prenet(x) * x_mask
x = self.wn(x, x_mask, g)
o = self.postnet(x) * x_mask
return o
class RelativePositionTransformerDecoder(nn.Module):
"""Decoder with Relative Positional Transformer.
Note:
Default params
params={
'hidden_channels_ffn': 128,
'num_heads': 2,
"kernel_size": 3,
"dropout_p": 0.1,
"num_layers": 8,
"rel_attn_window_size": 4,
"input_length": None
}
Args:
in_channels (int): number of input channels.
out_channels (int): number of output channels.
hidden_channels (int): number of hidden channels including Transformer layers.
params (dict): dictionary for residual convolutional blocks.
"""
def __init__(self, in_channels, out_channels, hidden_channels, params):
super().__init__()
self.prenet = Conv1dBN(in_channels, hidden_channels, 1, 1)
self.rel_pos_transformer = RelativePositionTransformer(in_channels, out_channels, hidden_channels, **params)
def forward(self, x, x_mask=None, g=None): # pylint: disable=unused-argument
o = self.prenet(x) * x_mask
o = self.rel_pos_transformer(o, x_mask)
return o
class FFTransformerDecoder(nn.Module):
"""Decoder with FeedForwardTransformer.
Default params
params={
'hidden_channels_ffn': 1024,
'num_heads': 2,
"dropout_p": 0.1,
"num_layers": 6,
}
Args:
in_channels (int): number of input channels.
out_channels (int): number of output channels.
hidden_channels (int): number of hidden channels including Transformer layers.
params (dict): dictionary for residual convolutional blocks.
"""
def __init__(self, in_channels, out_channels, params):
super().__init__()
self.transformer_block = FFTransformerBlock(in_channels, **params)
self.postnet = nn.Conv1d(in_channels, out_channels, 1)
def forward(self, x, x_mask=None, g=None): # pylint: disable=unused-argument
# TODO: handle multi-speaker
x_mask = 1 if x_mask is None else x_mask
o = self.transformer_block(x) * x_mask
o = self.postnet(o) * x_mask
return o
class ResidualConv1dBNDecoder(nn.Module):
"""Residual Convolutional Decoder as in the original Speedy Speech paper
TODO: Integrate speaker conditioning vector.
Note:
Default params
params = {
"kernel_size": 4,
"dilations": 4 * [1, 2, 4, 8] + [1],
"num_conv_blocks": 2,
"num_res_blocks": 17
}
Args:
in_channels (int): number of input channels.
out_channels (int): number of output channels.
hidden_channels (int): number of hidden channels including ResidualConv1dBNBlock layers.
params (dict): dictionary for residual convolutional blocks.
"""
def __init__(self, in_channels, out_channels, hidden_channels, params):
super().__init__()
self.res_conv_block = ResidualConv1dBNBlock(in_channels, hidden_channels, hidden_channels, **params)
self.post_conv = nn.Conv1d(hidden_channels, hidden_channels, 1)
self.postnet = nn.Sequential(
Conv1dBNBlock(
hidden_channels, hidden_channels, hidden_channels, params["kernel_size"], 1, num_conv_blocks=2
),
nn.Conv1d(hidden_channels, out_channels, 1),
)
def forward(self, x, x_mask=None, g=None): # pylint: disable=unused-argument
o = self.res_conv_block(x, x_mask)
o = self.post_conv(o) + x
return self.postnet(o) * x_mask
class Decoder(nn.Module):
"""Decodes the expanded phoneme encoding into spectrograms
Args:
out_channels (int): number of output channels.
in_hidden_channels (int): input and hidden channels. Model keeps the input channels for the intermediate layers.
decoder_type (str): decoder layer types. 'transformers' or 'residual_conv_bn'. Default 'residual_conv_bn'.
decoder_params (dict): model parameters for specified decoder type.
c_in_channels (int): number of channels for conditional input.
Shapes:
- input: (B, C, T)
"""
# pylint: disable=dangerous-default-value
def __init__(
self,
out_channels,
in_hidden_channels,
decoder_type="residual_conv_bn",
decoder_params={
"kernel_size": 4,
"dilations": 4 * [1, 2, 4, 8] + [1],
"num_conv_blocks": 2,
"num_res_blocks": 17,
},
c_in_channels=0,
):
super().__init__()
if decoder_type.lower() == "relative_position_transformer":
self.decoder = RelativePositionTransformerDecoder(
in_channels=in_hidden_channels,
out_channels=out_channels,
hidden_channels=in_hidden_channels,
params=decoder_params,
)
elif decoder_type.lower() == "residual_conv_bn":
self.decoder = ResidualConv1dBNDecoder(
in_channels=in_hidden_channels,
out_channels=out_channels,
hidden_channels=in_hidden_channels,
params=decoder_params,
)
elif decoder_type.lower() == "wavenet":
self.decoder = WaveNetDecoder(
in_channels=in_hidden_channels,
out_channels=out_channels,
hidden_channels=in_hidden_channels,
c_in_channels=c_in_channels,
params=decoder_params,
)
elif decoder_type.lower() == "fftransformer":
self.decoder = FFTransformerDecoder(in_hidden_channels, out_channels, decoder_params)
else:
raise ValueError(f"[!] Unknown decoder type - {decoder_type}")
def forward(self, x, x_mask, g=None): # pylint: disable=unused-argument
"""
Args:
x: [B, C, T]
x_mask: [B, 1, T]
g: [B, C_g, 1]
"""
# TODO: implement multi-speaker
o = self.decoder(x, x_mask, g)
return o
|