Spaces:
Running
Running
File size: 24,716 Bytes
9b2107c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 |
from typing import List
import torch
import torch.distributions as tdist
import torch.nn.functional as F
from torch import nn
from torch.utils.checkpoint import checkpoint
from TTS.tts.layers.overflow.common_layers import Outputnet, OverflowUtils
from TTS.tts.layers.tacotron.common_layers import Prenet
from TTS.tts.utils.helpers import sequence_mask
class NeuralHMM(nn.Module):
"""Autoregressive left to right HMM model primarily used in "Neural HMMs are all you need (for high-quality attention-free TTS)"
Paper::
https://arxiv.org/abs/2108.13320
Paper abstract::
Neural sequence-to-sequence TTS has achieved significantly better output quality than statistical speech synthesis using
HMMs. However, neural TTS is generally not probabilistic and uses non-monotonic attention. Attention failures increase
training time and can make synthesis babble incoherently. This paper describes how the old and new paradigms can be
combined to obtain the advantages of both worlds, by replacing attention in neural TTS with an autoregressive left-right
no-skip hidden Markov model defined by a neural network. Based on this proposal, we modify Tacotron 2 to obtain an
HMM-based neural TTS model with monotonic alignment, trained to maximise the full sequence likelihood without
approximation. We also describe how to combine ideas from classical and contemporary TTS for best results. The resulting
example system is smaller and simpler than Tacotron 2, and learns to speak with fewer iterations and less data, whilst
achieving comparable naturalness prior to the post-net. Our approach also allows easy control over speaking rate.
Args:
frame_channels (int): Output dimension to generate.
ar_order (int): Autoregressive order of the model. In ablations of Neural HMM it was found that more autoregression while giving more variation hurts naturalness of the synthesised audio.
deterministic_transition (bool): deterministic duration generation based on duration quantiles as defiend in "S. Ronanki, O. Watts, S. King, and G. E. Henter, “Medianbased generation of synthetic speech durations using a nonparametric approach,” in Proc. SLT, 2016.". Defaults to True.
encoder_dim (int): Channels of encoder input and character embedding tensors. Defaults to 512.
prenet_type (str): `original` or `bn`. `original` sets the default Prenet and `bn` uses Batch Normalization version of the Prenet.
prenet_dim (int): Dimension of the Prenet.
prenet_n_layers (int): Number of layers in the Prenet.
prenet_dropout (float): Dropout probability of the Prenet.
prenet_dropout_at_inference (bool): If True, dropout is applied at inference time.
memory_rnn_dim (int): Size of the memory RNN to process output of prenet.
outputnet_size (List[int]): Size of the output network inside the neural HMM.
flat_start_params (dict): Parameters for the flat start initialization of the neural HMM.
std_floor (float): Floor value for the standard deviation of the neural HMM. Prevents model cheating by putting point mass and getting infinite likelihood at any datapoint.
use_grad_checkpointing (bool, optional): Use gradient checkpointing to save memory. Defaults to True.
"""
def __init__(
self,
frame_channels: int,
ar_order: int,
deterministic_transition: bool,
encoder_dim: int,
prenet_type: str,
prenet_dim: int,
prenet_n_layers: int,
prenet_dropout: float,
prenet_dropout_at_inference: bool,
memory_rnn_dim: int,
outputnet_size: List[int],
flat_start_params: dict,
std_floor: float,
use_grad_checkpointing: bool = True,
):
super().__init__()
self.frame_channels = frame_channels
self.ar_order = ar_order
self.deterministic_transition = deterministic_transition
self.prenet_dim = prenet_dim
self.memory_rnn_dim = memory_rnn_dim
self.use_grad_checkpointing = use_grad_checkpointing
self.transition_model = TransitionModel()
self.emission_model = EmissionModel()
assert ar_order > 0, f"AR order must be greater than 0 provided {ar_order}"
self.ar_order = ar_order
self.prenet = Prenet(
in_features=frame_channels * ar_order,
prenet_type=prenet_type,
prenet_dropout=prenet_dropout,
dropout_at_inference=prenet_dropout_at_inference,
out_features=[self.prenet_dim for _ in range(prenet_n_layers)],
bias=False,
)
self.memory_rnn = nn.LSTMCell(input_size=prenet_dim, hidden_size=memory_rnn_dim)
self.output_net = Outputnet(
encoder_dim, memory_rnn_dim, frame_channels, outputnet_size, flat_start_params, std_floor
)
self.register_buffer("go_tokens", torch.zeros(ar_order, 1))
def forward(self, inputs, inputs_len, mels, mel_lens):
r"""HMM forward algorithm for training uses logarithmic version of Rabiner (1989) forward algorithm.
Args:
inputs (torch.FloatTensor): Encoder outputs
inputs_len (torch.LongTensor): Encoder output lengths
mels (torch.FloatTensor): Mel inputs
mel_lens (torch.LongTensor): Length of mel inputs
Shapes:
- inputs: (B, T, D_out_enc)
- inputs_len: (B)
- mels: (B, D_mel, T_mel)
- mel_lens: (B)
Returns:
log_prob (torch.FloatTensor): Log probability of the sequence
"""
# Get dimensions of inputs
batch_size, N, _ = inputs.shape
T_max = torch.max(mel_lens)
mels = mels.permute(0, 2, 1)
# Intialize forward algorithm
log_state_priors = self._initialize_log_state_priors(inputs)
log_c, log_alpha_scaled, transition_matrix, means = self._initialize_forward_algorithm_variables(mels, N)
# Initialize autoregression elements
ar_inputs = self._add_go_token(mels)
h_memory, c_memory = self._init_lstm_states(batch_size, self.memory_rnn_dim, mels)
for t in range(T_max):
# Process Autoregression
h_memory, c_memory = self._process_ar_timestep(t, ar_inputs, h_memory, c_memory)
# Get mean, std and transition vector from decoder for this timestep
# Note: Gradient checkpointing currently doesn't works with multiple gpus inside a loop
if self.use_grad_checkpointing and self.training:
mean, std, transition_vector = checkpoint(self.output_net, h_memory, inputs)
else:
mean, std, transition_vector = self.output_net(h_memory, inputs)
if t == 0:
log_alpha_temp = log_state_priors + self.emission_model(mels[:, 0], mean, std, inputs_len)
else:
log_alpha_temp = self.emission_model(mels[:, t], mean, std, inputs_len) + self.transition_model(
log_alpha_scaled[:, t - 1, :], transition_vector, inputs_len
)
log_c[:, t] = torch.logsumexp(log_alpha_temp, dim=1)
log_alpha_scaled[:, t, :] = log_alpha_temp - log_c[:, t].unsqueeze(1)
transition_matrix[:, t] = transition_vector # needed for absorption state calculation
# Save for plotting
means.append(mean.detach())
log_c, log_alpha_scaled = self._mask_lengths(mel_lens, log_c, log_alpha_scaled)
sum_final_log_c = self.get_absorption_state_scaling_factor(
mel_lens, log_alpha_scaled, inputs_len, transition_matrix
)
log_probs = torch.sum(log_c, dim=1) + sum_final_log_c
return log_probs, log_alpha_scaled, transition_matrix, means
@staticmethod
def _mask_lengths(mel_lens, log_c, log_alpha_scaled):
"""
Mask the lengths of the forward variables so that the variable lenghts
do not contribute in the loss calculation
Args:
mel_inputs (torch.FloatTensor): (batch, T, frame_channels)
mel_inputs_lengths (torch.IntTensor): (batch)
log_c (torch.FloatTensor): (batch, T)
Returns:
log_c (torch.FloatTensor) : scaled probabilities (batch, T)
log_alpha_scaled (torch.FloatTensor): forward probabilities (batch, T, N)
"""
mask_log_c = sequence_mask(mel_lens)
log_c = log_c * mask_log_c
mask_log_alpha_scaled = mask_log_c.unsqueeze(2)
log_alpha_scaled = log_alpha_scaled * mask_log_alpha_scaled
return log_c, log_alpha_scaled
def _process_ar_timestep(
self,
t,
ar_inputs,
h_memory,
c_memory,
):
"""
Process autoregression in timestep
1. At a specific t timestep
2. Perform data dropout if applied (we did not use it)
3. Run the autoregressive frame through the prenet (has dropout)
4. Run the prenet output through the post prenet rnn
Args:
t (int): mel-spec timestep
ar_inputs (torch.FloatTensor): go-token appended mel-spectrograms
- shape: (b, D_out, T_out)
h_post_prenet (torch.FloatTensor): previous timestep rnn hidden state
- shape: (b, memory_rnn_dim)
c_post_prenet (torch.FloatTensor): previous timestep rnn cell state
- shape: (b, memory_rnn_dim)
Returns:
h_post_prenet (torch.FloatTensor): rnn hidden state of the current timestep
c_post_prenet (torch.FloatTensor): rnn cell state of the current timestep
"""
prenet_input = ar_inputs[:, t : t + self.ar_order].flatten(1)
memory_inputs = self.prenet(prenet_input)
h_memory, c_memory = self.memory_rnn(memory_inputs, (h_memory, c_memory))
return h_memory, c_memory
def _add_go_token(self, mel_inputs):
"""Append the go token to create the autoregressive input
Args:
mel_inputs (torch.FloatTensor): (batch_size, T, n_mel_channel)
Returns:
ar_inputs (torch.FloatTensor): (batch_size, T, n_mel_channel)
"""
batch_size, T, _ = mel_inputs.shape
go_tokens = self.go_tokens.unsqueeze(0).expand(batch_size, self.ar_order, self.frame_channels)
ar_inputs = torch.cat((go_tokens, mel_inputs), dim=1)[:, :T]
return ar_inputs
@staticmethod
def _initialize_forward_algorithm_variables(mel_inputs, N):
r"""Initialize placeholders for forward algorithm variables, to use a stable
version we will use log_alpha_scaled and the scaling constant
Args:
mel_inputs (torch.FloatTensor): (b, T_max, frame_channels)
N (int): number of states
Returns:
log_c (torch.FloatTensor): Scaling constant (b, T_max)
"""
b, T_max, _ = mel_inputs.shape
log_alpha_scaled = mel_inputs.new_zeros((b, T_max, N))
log_c = mel_inputs.new_zeros(b, T_max)
transition_matrix = mel_inputs.new_zeros((b, T_max, N))
# Saving for plotting later, will not have gradient tapes
means = []
return log_c, log_alpha_scaled, transition_matrix, means
@staticmethod
def _init_lstm_states(batch_size, hidden_state_dim, device_tensor):
r"""
Initialize Hidden and Cell states for LSTM Cell
Args:
batch_size (Int): batch size
hidden_state_dim (Int): dimensions of the h and c
device_tensor (torch.FloatTensor): useful for the device and type
Returns:
(torch.FloatTensor): shape (batch_size, hidden_state_dim)
can be hidden state for LSTM
(torch.FloatTensor): shape (batch_size, hidden_state_dim)
can be the cell state for LSTM
"""
return (
device_tensor.new_zeros(batch_size, hidden_state_dim),
device_tensor.new_zeros(batch_size, hidden_state_dim),
)
def get_absorption_state_scaling_factor(self, mels_len, log_alpha_scaled, inputs_len, transition_vector):
"""Returns the final scaling factor of absorption state
Args:
mels_len (torch.IntTensor): Input size of mels to
get the last timestep of log_alpha_scaled
log_alpha_scaled (torch.FloatTEnsor): State probabilities
text_lengths (torch.IntTensor): length of the states to
mask the values of states lengths
(
Useful when the batch has very different lengths,
when the length of an observation is less than
the number of max states, then the log alpha after
the state value is filled with -infs. So we mask
those values so that it only consider the states
which are needed for that length
)
transition_vector (torch.FloatTensor): transtiion vector for each state per timestep
Shapes:
- mels_len: (batch_size)
- log_alpha_scaled: (batch_size, N, T)
- text_lengths: (batch_size)
- transition_vector: (batch_size, N, T)
Returns:
sum_final_log_c (torch.FloatTensor): (batch_size)
"""
N = torch.max(inputs_len)
max_inputs_len = log_alpha_scaled.shape[2]
state_lengths_mask = sequence_mask(inputs_len, max_len=max_inputs_len)
last_log_alpha_scaled_index = (
(mels_len - 1).unsqueeze(-1).expand(-1, N).unsqueeze(1)
) # Batch X Hidden State Size
last_log_alpha_scaled = torch.gather(log_alpha_scaled, 1, last_log_alpha_scaled_index).squeeze(1)
last_log_alpha_scaled = last_log_alpha_scaled.masked_fill(~state_lengths_mask, -float("inf"))
last_transition_vector = torch.gather(transition_vector, 1, last_log_alpha_scaled_index).squeeze(1)
last_transition_probability = torch.sigmoid(last_transition_vector)
log_probability_of_transitioning = OverflowUtils.log_clamped(last_transition_probability)
last_transition_probability_index = self.get_mask_for_last_item(inputs_len, inputs_len.device)
log_probability_of_transitioning = log_probability_of_transitioning.masked_fill(
~last_transition_probability_index, -float("inf")
)
final_log_c = last_log_alpha_scaled + log_probability_of_transitioning
# If the length of the mel is less than the number of states it will select the -inf values leading to nan gradients
# Ideally, we should clean the dataset otherwise this is a little hack uncomment the line below
final_log_c = final_log_c.clamp(min=torch.finfo(final_log_c.dtype).min)
sum_final_log_c = torch.logsumexp(final_log_c, dim=1)
return sum_final_log_c
@staticmethod
def get_mask_for_last_item(lengths, device, out_tensor=None):
"""Returns n-1 mask for the last item in the sequence.
Args:
lengths (torch.IntTensor): lengths in a batch
device (str, optional): Defaults to "cpu".
out_tensor (torch.Tensor, optional): uses the memory of a specific tensor.
Defaults to None.
Returns:
- Shape: :math:`(b, max_len)`
"""
max_len = torch.max(lengths).item()
ids = (
torch.arange(0, max_len, device=device) if out_tensor is None else torch.arange(0, max_len, out=out_tensor)
)
mask = ids == lengths.unsqueeze(1) - 1
return mask
@torch.inference_mode()
def inference(
self,
inputs: torch.FloatTensor,
input_lens: torch.LongTensor,
sampling_temp: float,
max_sampling_time: int,
duration_threshold: float,
):
"""Inference from autoregressive neural HMM
Args:
inputs (torch.FloatTensor): input states
- shape: :math:`(b, T, d)`
input_lens (torch.LongTensor): input state lengths
- shape: :math:`(b)`
sampling_temp (float): sampling temperature
max_sampling_temp (int): max sampling temperature
duration_threshold (float): duration threshold to switch to next state
- Use this to change the spearking rate of the synthesised audio
"""
b = inputs.shape[0]
outputs = {
"hmm_outputs": [],
"hmm_outputs_len": [],
"alignments": [],
"input_parameters": [],
"output_parameters": [],
}
for i in range(b):
neural_hmm_outputs, states_travelled, input_parameters, output_parameters = self.sample(
inputs[i : i + 1], input_lens[i], sampling_temp, max_sampling_time, duration_threshold
)
outputs["hmm_outputs"].append(neural_hmm_outputs)
outputs["hmm_outputs_len"].append(neural_hmm_outputs.shape[0])
outputs["alignments"].append(states_travelled)
outputs["input_parameters"].append(input_parameters)
outputs["output_parameters"].append(output_parameters)
outputs["hmm_outputs"] = nn.utils.rnn.pad_sequence(outputs["hmm_outputs"], batch_first=True)
outputs["hmm_outputs_len"] = torch.tensor(
outputs["hmm_outputs_len"], dtype=input_lens.dtype, device=input_lens.device
)
return outputs
@torch.inference_mode()
def sample(self, inputs, input_lens, sampling_temp, max_sampling_time, duration_threshold):
"""Samples an output from the parameter models
Args:
inputs (torch.FloatTensor): input states
- shape: :math:`(1, T, d)`
input_lens (torch.LongTensor): input state lengths
- shape: :math:`(1)`
sampling_temp (float): sampling temperature
max_sampling_time (int): max sampling time
duration_threshold (float): duration threshold to switch to next state
Returns:
outputs (torch.FloatTensor): Output Observations
- Shape: :math:`(T, output_dim)`
states_travelled (list[int]): Hidden states travelled
- Shape: :math:`(T)`
input_parameters (list[torch.FloatTensor]): Input parameters
output_parameters (list[torch.FloatTensor]): Output parameters
"""
states_travelled, outputs, t = [], [], 0
# Sample initial state
current_state = 0
states_travelled.append(current_state)
# Prepare autoregression
prenet_input = self.go_tokens.unsqueeze(0).expand(1, self.ar_order, self.frame_channels)
h_memory, c_memory = self._init_lstm_states(1, self.memory_rnn_dim, prenet_input)
input_parameter_values = []
output_parameter_values = []
quantile = 1
while True:
memory_input = self.prenet(prenet_input.flatten(1).unsqueeze(0))
# will be 1 while sampling
h_memory, c_memory = self.memory_rnn(memory_input.squeeze(0), (h_memory, c_memory))
z_t = inputs[:, current_state].unsqueeze(0) # Add fake time dimension
mean, std, transition_vector = self.output_net(h_memory, z_t)
transition_probability = torch.sigmoid(transition_vector.flatten())
staying_probability = torch.sigmoid(-transition_vector.flatten())
# Save for plotting
input_parameter_values.append([prenet_input, current_state])
output_parameter_values.append([mean, std, transition_probability])
x_t = self.emission_model.sample(mean, std, sampling_temp=sampling_temp)
# Prepare autoregressive input for next iteration
prenet_input = torch.cat((prenet_input, x_t), dim=1)[:, 1:]
outputs.append(x_t.flatten())
transition_matrix = torch.cat((staying_probability, transition_probability))
quantile *= staying_probability
if not self.deterministic_transition:
switch = transition_matrix.multinomial(1)[0].item()
else:
switch = quantile < duration_threshold
if switch:
current_state += 1
quantile = 1
states_travelled.append(current_state)
if (current_state == input_lens) or (max_sampling_time and t == max_sampling_time - 1):
break
t += 1
return (
torch.stack(outputs, dim=0),
F.one_hot(input_lens.new_tensor(states_travelled)),
input_parameter_values,
output_parameter_values,
)
@staticmethod
def _initialize_log_state_priors(text_embeddings):
"""Creates the log pi in forward algorithm.
Args:
text_embeddings (torch.FloatTensor): used to create the log pi
on current device
Shapes:
- text_embeddings: (B, T, D_out_enc)
"""
N = text_embeddings.shape[1]
log_state_priors = text_embeddings.new_full([N], -float("inf"))
log_state_priors[0] = 0.0
return log_state_priors
class TransitionModel(nn.Module):
"""Transition Model of the HMM, it represents the probability of transitioning
form current state to all other states"""
def forward(self, log_alpha_scaled, transition_vector, inputs_len): # pylint: disable=no-self-use
r"""
product of the past state with transitional probabilities in log space
Args:
log_alpha_scaled (torch.Tensor): Multiply previous timestep's alphas by
transition matrix (in log domain)
- shape: (batch size, N)
transition_vector (torch.tensor): transition vector for each state
- shape: (N)
inputs_len (int tensor): Lengths of states in a batch
- shape: (batch)
Returns:
out (torch.FloatTensor): log probability of transitioning to each state
"""
transition_p = torch.sigmoid(transition_vector)
staying_p = torch.sigmoid(-transition_vector)
log_staying_probability = OverflowUtils.log_clamped(staying_p)
log_transition_probability = OverflowUtils.log_clamped(transition_p)
staying = log_alpha_scaled + log_staying_probability
leaving = log_alpha_scaled + log_transition_probability
leaving = leaving.roll(1, dims=1)
leaving[:, 0] = -float("inf")
inputs_len_mask = sequence_mask(inputs_len)
out = OverflowUtils.logsumexp(torch.stack((staying, leaving), dim=2), dim=2)
out = out.masked_fill(~inputs_len_mask, -float("inf")) # There are no states to contribute to the loss
return out
class EmissionModel(nn.Module):
"""Emission Model of the HMM, it represents the probability of
emitting an observation based on the current state"""
def __init__(self) -> None:
super().__init__()
self.distribution_function: tdist.Distribution = tdist.normal.Normal
def sample(self, means, stds, sampling_temp):
return self.distribution_function(means, stds * sampling_temp).sample() if sampling_temp > 0 else means
def forward(self, x_t, means, stds, state_lengths):
r"""Calculates the log probability of the the given data (x_t)
being observed from states with given means and stds
Args:
x_t (float tensor) : observation at current time step
- shape: (batch, feature_dim)
means (float tensor): means of the distributions of hidden states
- shape: (batch, hidden_state, feature_dim)
stds (float tensor): standard deviations of the distributions of the hidden states
- shape: (batch, hidden_state, feature_dim)
state_lengths (int tensor): Lengths of states in a batch
- shape: (batch)
Returns:
out (float tensor): observation log likelihoods,
expressing the probability of an observation
being generated from a state i
shape: (batch, hidden_state)
"""
emission_dists = self.distribution_function(means, stds)
out = emission_dists.log_prob(x_t.unsqueeze(1))
state_lengths_mask = sequence_mask(state_lengths).unsqueeze(2)
out = torch.sum(out * state_lengths_mask, dim=2)
return out
|