File size: 14,879 Bytes
9b2107c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
import functools
from math import sqrt

import torch
import torch.distributed as distributed
import torch.nn as nn
import torch.nn.functional as F
import torchaudio
from einops import rearrange


def default(val, d):
    return val if val is not None else d


def eval_decorator(fn):
    def inner(model, *args, **kwargs):
        was_training = model.training
        model.eval()
        out = fn(model, *args, **kwargs)
        model.train(was_training)
        return out

    return inner


def dvae_wav_to_mel(
    wav, mel_norms_file="../experiments/clips_mel_norms.pth", mel_norms=None, device=torch.device("cpu")
):
    mel_stft = torchaudio.transforms.MelSpectrogram(
        n_fft=1024,
        hop_length=256,
        win_length=1024,
        power=2,
        normalized=False,
        sample_rate=22050,
        f_min=0,
        f_max=8000,
        n_mels=80,
        norm="slaney",
    ).to(device)
    wav = wav.to(device)
    mel = mel_stft(wav)
    mel = torch.log(torch.clamp(mel, min=1e-5))
    if mel_norms is None:
        mel_norms = torch.load(mel_norms_file, map_location=device)
    mel = mel / mel_norms.unsqueeze(0).unsqueeze(-1)
    return mel


class Quantize(nn.Module):
    def __init__(self, dim, n_embed, decay=0.99, eps=1e-5, balancing_heuristic=False, new_return_order=False):
        super().__init__()

        self.dim = dim
        self.n_embed = n_embed
        self.decay = decay
        self.eps = eps

        self.balancing_heuristic = balancing_heuristic
        self.codes = None
        self.max_codes = 64000
        self.codes_full = False
        self.new_return_order = new_return_order

        embed = torch.randn(dim, n_embed)
        self.register_buffer("embed", embed)
        self.register_buffer("cluster_size", torch.zeros(n_embed))
        self.register_buffer("embed_avg", embed.clone())

    def forward(self, input, return_soft_codes=False):
        if self.balancing_heuristic and self.codes_full:
            h = torch.histc(self.codes, bins=self.n_embed, min=0, max=self.n_embed) / len(self.codes)
            mask = torch.logical_or(h > 0.9, h < 0.01).unsqueeze(1)
            ep = self.embed.permute(1, 0)
            ea = self.embed_avg.permute(1, 0)
            rand_embed = torch.randn_like(ep) * mask
            self.embed = (ep * ~mask + rand_embed).permute(1, 0)
            self.embed_avg = (ea * ~mask + rand_embed).permute(1, 0)
            self.cluster_size = self.cluster_size * ~mask.squeeze()
            if torch.any(mask):
                print(f"Reset {torch.sum(mask)} embedding codes.")
                self.codes = None
                self.codes_full = False

        flatten = input.reshape(-1, self.dim)
        dist = flatten.pow(2).sum(1, keepdim=True) - 2 * flatten @ self.embed + self.embed.pow(2).sum(0, keepdim=True)
        soft_codes = -dist
        _, embed_ind = soft_codes.max(1)
        embed_onehot = F.one_hot(embed_ind, self.n_embed).type(flatten.dtype)
        embed_ind = embed_ind.view(*input.shape[:-1])
        quantize = self.embed_code(embed_ind)

        if self.balancing_heuristic:
            if self.codes is None:
                self.codes = embed_ind.flatten()
            else:
                self.codes = torch.cat([self.codes, embed_ind.flatten()])
                if len(self.codes) > self.max_codes:
                    self.codes = self.codes[-self.max_codes :]
                    self.codes_full = True

        if self.training:
            embed_onehot_sum = embed_onehot.sum(0)
            embed_sum = flatten.transpose(0, 1) @ embed_onehot

            if distributed.is_initialized() and distributed.get_world_size() > 1:
                distributed.all_reduce(embed_onehot_sum)
                distributed.all_reduce(embed_sum)

            self.cluster_size.data.mul_(self.decay).add_(embed_onehot_sum, alpha=1 - self.decay)
            self.embed_avg.data.mul_(self.decay).add_(embed_sum, alpha=1 - self.decay)
            n = self.cluster_size.sum()
            cluster_size = (self.cluster_size + self.eps) / (n + self.n_embed * self.eps) * n
            embed_normalized = self.embed_avg / cluster_size.unsqueeze(0)
            self.embed.data.copy_(embed_normalized)

        diff = (quantize.detach() - input).pow(2).mean()
        quantize = input + (quantize - input).detach()

        if return_soft_codes:
            return quantize, diff, embed_ind, soft_codes.view(input.shape[:-1] + (-1,))
        elif self.new_return_order:
            return quantize, embed_ind, diff
        else:
            return quantize, diff, embed_ind

    def embed_code(self, embed_id):
        return F.embedding(embed_id, self.embed.transpose(0, 1))


# Fits a soft-discretized input to a normal-PDF across the specified dimension.
# In other words, attempts to force the discretization function to have a mean equal utilization across all discrete
# values with the specified expected variance.
class DiscretizationLoss(nn.Module):
    def __init__(self, discrete_bins, dim, expected_variance, store_past=0):
        super().__init__()
        self.discrete_bins = discrete_bins
        self.dim = dim
        self.dist = torch.distributions.Normal(0, scale=expected_variance)
        if store_past > 0:
            self.record_past = True
            self.register_buffer("accumulator_index", torch.zeros(1, dtype=torch.long, device="cpu"))
            self.register_buffer("accumulator_filled", torch.zeros(1, dtype=torch.long, device="cpu"))
            self.register_buffer("accumulator", torch.zeros(store_past, discrete_bins))
        else:
            self.record_past = False

    def forward(self, x):
        other_dims = set(range(len(x.shape))) - set([self.dim])
        averaged = x.sum(dim=tuple(other_dims)) / x.sum()
        averaged = averaged - averaged.mean()

        if self.record_past:
            acc_count = self.accumulator.shape[0]
            avg = averaged.detach().clone()
            if self.accumulator_filled > 0:
                averaged = torch.mean(self.accumulator, dim=0) * (acc_count - 1) / acc_count + averaged / acc_count

            # Also push averaged into the accumulator.
            self.accumulator[self.accumulator_index] = avg
            self.accumulator_index += 1
            if self.accumulator_index >= acc_count:
                self.accumulator_index *= 0
                if self.accumulator_filled <= 0:
                    self.accumulator_filled += 1

        return torch.sum(-self.dist.log_prob(averaged))


class ResBlock(nn.Module):
    def __init__(self, chan, conv, activation):
        super().__init__()
        self.net = nn.Sequential(
            conv(chan, chan, 3, padding=1),
            activation(),
            conv(chan, chan, 3, padding=1),
            activation(),
            conv(chan, chan, 1),
        )

    def forward(self, x):
        return self.net(x) + x


class UpsampledConv(nn.Module):
    def __init__(self, conv, *args, **kwargs):
        super().__init__()
        assert "stride" in kwargs.keys()
        self.stride = kwargs["stride"]
        del kwargs["stride"]
        self.conv = conv(*args, **kwargs)

    def forward(self, x):
        up = nn.functional.interpolate(x, scale_factor=self.stride, mode="nearest")
        return self.conv(up)


# DiscreteVAE partially derived from lucidrains DALLE implementation
# Credit: https://github.com/lucidrains/DALLE-pytorch
class DiscreteVAE(nn.Module):
    def __init__(
        self,
        positional_dims=2,
        num_tokens=512,
        codebook_dim=512,
        num_layers=3,
        num_resnet_blocks=0,
        hidden_dim=64,
        channels=3,
        stride=2,
        kernel_size=4,
        use_transposed_convs=True,
        encoder_norm=False,
        activation="relu",
        smooth_l1_loss=False,
        straight_through=False,
        normalization=None,  # ((0.5,) * 3, (0.5,) * 3),
        record_codes=False,
        discretization_loss_averaging_steps=100,
        lr_quantizer_args={},
    ):
        super().__init__()
        has_resblocks = num_resnet_blocks > 0

        self.num_tokens = num_tokens
        self.num_layers = num_layers
        self.straight_through = straight_through
        self.positional_dims = positional_dims
        self.discrete_loss = DiscretizationLoss(
            num_tokens, 2, 1 / (num_tokens * 2), discretization_loss_averaging_steps
        )

        assert positional_dims > 0 and positional_dims < 3  # This VAE only supports 1d and 2d inputs for now.
        if positional_dims == 2:
            conv = nn.Conv2d
            conv_transpose = nn.ConvTranspose2d
        else:
            conv = nn.Conv1d
            conv_transpose = nn.ConvTranspose1d
        if not use_transposed_convs:
            conv_transpose = functools.partial(UpsampledConv, conv)

        if activation == "relu":
            act = nn.ReLU
        elif activation == "silu":
            act = nn.SiLU
        else:
            assert NotImplementedError()

        enc_layers = []
        dec_layers = []

        if num_layers > 0:
            enc_chans = [hidden_dim * 2**i for i in range(num_layers)]
            dec_chans = list(reversed(enc_chans))

            enc_chans = [channels, *enc_chans]

            dec_init_chan = codebook_dim if not has_resblocks else dec_chans[0]
            dec_chans = [dec_init_chan, *dec_chans]

            enc_chans_io, dec_chans_io = map(lambda t: list(zip(t[:-1], t[1:])), (enc_chans, dec_chans))

            pad = (kernel_size - 1) // 2
            for (enc_in, enc_out), (dec_in, dec_out) in zip(enc_chans_io, dec_chans_io):
                enc_layers.append(nn.Sequential(conv(enc_in, enc_out, kernel_size, stride=stride, padding=pad), act()))
                if encoder_norm:
                    enc_layers.append(nn.GroupNorm(8, enc_out))
                dec_layers.append(
                    nn.Sequential(conv_transpose(dec_in, dec_out, kernel_size, stride=stride, padding=pad), act())
                )
            dec_out_chans = dec_chans[-1]
            innermost_dim = dec_chans[0]
        else:
            enc_layers.append(nn.Sequential(conv(channels, hidden_dim, 1), act()))
            dec_out_chans = hidden_dim
            innermost_dim = hidden_dim

        for _ in range(num_resnet_blocks):
            dec_layers.insert(0, ResBlock(innermost_dim, conv, act))
            enc_layers.append(ResBlock(innermost_dim, conv, act))

        if num_resnet_blocks > 0:
            dec_layers.insert(0, conv(codebook_dim, innermost_dim, 1))

        enc_layers.append(conv(innermost_dim, codebook_dim, 1))
        dec_layers.append(conv(dec_out_chans, channels, 1))

        self.encoder = nn.Sequential(*enc_layers)
        self.decoder = nn.Sequential(*dec_layers)

        self.loss_fn = F.smooth_l1_loss if smooth_l1_loss else F.mse_loss
        self.codebook = Quantize(codebook_dim, num_tokens, new_return_order=True)

        # take care of normalization within class
        self.normalization = normalization
        self.record_codes = record_codes
        if record_codes:
            self.codes = torch.zeros((1228800,), dtype=torch.long)
            self.code_ind = 0
            self.total_codes = 0
        self.internal_step = 0

    def norm(self, images):
        if not self.normalization is not None:
            return images

        means, stds = map(lambda t: torch.as_tensor(t).to(images), self.normalization)
        arrange = "c -> () c () ()" if self.positional_dims == 2 else "c -> () c ()"
        means, stds = map(lambda t: rearrange(t, arrange), (means, stds))
        images = images.clone()
        images.sub_(means).div_(stds)
        return images

    def get_debug_values(self, step, __):
        if self.record_codes and self.total_codes > 0:
            # Report annealing schedule
            return {"histogram_codes": self.codes[: self.total_codes]}
        else:
            return {}

    @torch.no_grad()
    @eval_decorator
    def get_codebook_indices(self, images):
        img = self.norm(images)
        logits = self.encoder(img).permute((0, 2, 3, 1) if len(img.shape) == 4 else (0, 2, 1))
        sampled, codes, _ = self.codebook(logits)
        self.log_codes(codes)
        return codes

    def decode(self, img_seq):
        self.log_codes(img_seq)
        if hasattr(self.codebook, "embed_code"):
            image_embeds = self.codebook.embed_code(img_seq)
        else:
            image_embeds = F.embedding(img_seq, self.codebook.codebook)
        b, n, d = image_embeds.shape

        kwargs = {}
        if self.positional_dims == 1:
            arrange = "b n d -> b d n"
        else:
            h = w = int(sqrt(n))
            arrange = "b (h w) d -> b d h w"
            kwargs = {"h": h, "w": w}
        image_embeds = rearrange(image_embeds, arrange, **kwargs)
        images = [image_embeds]
        for layer in self.decoder:
            images.append(layer(images[-1]))
        return images[-1], images[-2]

    def infer(self, img):
        img = self.norm(img)
        logits = self.encoder(img).permute((0, 2, 3, 1) if len(img.shape) == 4 else (0, 2, 1))
        sampled, codes, commitment_loss = self.codebook(logits)
        return self.decode(codes)

    # Note: This module is not meant to be run in forward() except while training. It has special logic which performs
    # evaluation using quantized values when it detects that it is being run in eval() mode, which will be substantially
    # more lossy (but useful for determining network performance).
    def forward(self, img):
        img = self.norm(img)
        logits = self.encoder(img).permute((0, 2, 3, 1) if len(img.shape) == 4 else (0, 2, 1))
        sampled, codes, commitment_loss = self.codebook(logits)
        sampled = sampled.permute((0, 3, 1, 2) if len(img.shape) == 4 else (0, 2, 1))

        if self.training:
            out = sampled
            for d in self.decoder:
                out = d(out)
            self.log_codes(codes)
        else:
            # This is non-differentiable, but gives a better idea of how the network is actually performing.
            out, _ = self.decode(codes)

        # reconstruction loss
        recon_loss = self.loss_fn(img, out, reduction="none")

        return recon_loss, commitment_loss, out

    def log_codes(self, codes):
        # This is so we can debug the distribution of codes being learned.
        if self.record_codes and self.internal_step % 10 == 0:
            codes = codes.flatten()
            l = codes.shape[0]
            i = self.code_ind if (self.codes.shape[0] - self.code_ind) > l else self.codes.shape[0] - l
            self.codes[i : i + l] = codes.cpu()
            self.code_ind = self.code_ind + l
            if self.code_ind >= self.codes.shape[0]:
                self.code_ind = 0
            self.total_codes += 1
        self.internal_step += 1