Spaces:
Running
Running
File size: 9,419 Bytes
9b2107c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 |
# Adapted from https://github.com/lucidrains/naturalspeech2-pytorch/blob/659bec7f7543e7747e809e950cc2f84242fbeec7/naturalspeech2_pytorch/naturalspeech2_pytorch.py#L532
from collections import namedtuple
from functools import wraps
import torch
import torch.nn.functional as F
from einops import rearrange, repeat
from einops.layers.torch import Rearrange
from packaging import version
from torch import einsum, nn
def exists(val):
return val is not None
def once(fn):
called = False
@wraps(fn)
def inner(x):
nonlocal called
if called:
return
called = True
return fn(x)
return inner
print_once = once(print)
# main class
class Attend(nn.Module):
def __init__(self, dropout=0.0, causal=False, use_flash=False):
super().__init__()
self.dropout = dropout
self.attn_dropout = nn.Dropout(dropout)
self.causal = causal
self.register_buffer("mask", None, persistent=False)
self.use_flash = use_flash
assert not (
use_flash and version.parse(torch.__version__) < version.parse("2.0.0")
), "in order to use flash attention, you must be using pytorch 2.0 or above"
# determine efficient attention configs for cuda and cpu
self.config = namedtuple("EfficientAttentionConfig", ["enable_flash", "enable_math", "enable_mem_efficient"])
self.cpu_config = self.config(True, True, True)
self.cuda_config = None
if not torch.cuda.is_available() or not use_flash:
return
device_properties = torch.cuda.get_device_properties(torch.device("cuda"))
if device_properties.major == 8 and device_properties.minor == 0:
print_once("A100 GPU detected, using flash attention if input tensor is on cuda")
self.cuda_config = self.config(True, False, False)
else:
print_once("Non-A100 GPU detected, using math or mem efficient attention if input tensor is on cuda")
self.cuda_config = self.config(False, True, True)
def get_mask(self, n, device):
if exists(self.mask) and self.mask.shape[-1] >= n:
return self.mask[:n, :n]
mask = torch.ones((n, n), device=device, dtype=torch.bool).triu(1)
self.register_buffer("mask", mask, persistent=False)
return mask
def flash_attn(self, q, k, v, mask=None):
_, heads, q_len, _, k_len, is_cuda = *q.shape, k.shape[-2], q.is_cuda
# Recommended for multi-query single-key-value attention by Tri Dao
# kv shape torch.Size([1, 512, 64]) -> torch.Size([1, 8, 512, 64])
if k.ndim == 3:
k = rearrange(k, "b ... -> b 1 ...").expand_as(q)
if v.ndim == 3:
v = rearrange(v, "b ... -> b 1 ...").expand_as(q)
# Check if mask exists and expand to compatible shape
# The mask is B L, so it would have to be expanded to B H N L
if exists(mask):
mask = rearrange(mask, "b j -> b 1 1 j")
mask = mask.expand(-1, heads, q_len, -1)
# Check if there is a compatible device for flash attention
config = self.cuda_config if is_cuda else self.cpu_config
# pytorch 2.0 flash attn: q, k, v, mask, dropout, causal, softmax_scale
with torch.backends.cuda.sdp_kernel(**config._asdict()):
out = F.scaled_dot_product_attention(
q, k, v, attn_mask=mask, dropout_p=self.dropout if self.training else 0.0, is_causal=self.causal
)
return out
def forward(self, q, k, v, mask=None):
"""
einstein notation
b - batch
h - heads
n, i, j - sequence length (base sequence length, source, target)
d - feature dimension
"""
n, device = q.shape[-2], q.device
scale = q.shape[-1] ** -0.5
if self.use_flash:
return self.flash_attn(q, k, v, mask=mask)
kv_einsum_eq = "b j d" if k.ndim == 3 else "b h j d"
# similarity
sim = einsum(f"b h i d, {kv_einsum_eq} -> b h i j", q, k) * scale
# key padding mask
if exists(mask):
mask = rearrange(mask, "b j -> b 1 1 j")
sim = sim.masked_fill(~mask, -torch.finfo(sim.dtype).max)
# causal mask
if self.causal:
causal_mask = self.get_mask(n, device)
sim = sim.masked_fill(causal_mask, -torch.finfo(sim.dtype).max)
# attention
attn = sim.softmax(dim=-1)
attn = self.attn_dropout(attn)
# aggregate values
out = einsum(f"b h i j, {kv_einsum_eq} -> b h i d", attn, v)
return out
def Sequential(*mods):
return nn.Sequential(*filter(exists, mods))
def exists(x):
return x is not None
def default(val, d):
if exists(val):
return val
return d() if callable(d) else d
class RMSNorm(nn.Module):
def __init__(self, dim, scale=True, dim_cond=None):
super().__init__()
self.cond = exists(dim_cond)
self.to_gamma_beta = nn.Linear(dim_cond, dim * 2) if self.cond else None
self.scale = dim**0.5
self.gamma = nn.Parameter(torch.ones(dim)) if scale else None
def forward(self, x, cond=None):
gamma = default(self.gamma, 1)
out = F.normalize(x, dim=-1) * self.scale * gamma
if not self.cond:
return out
assert exists(cond)
gamma, beta = self.to_gamma_beta(cond).chunk(2, dim=-1)
gamma, beta = map(lambda t: rearrange(t, "b d -> b 1 d"), (gamma, beta))
return out * gamma + beta
class CausalConv1d(nn.Conv1d):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
(kernel_size,) = self.kernel_size
(dilation,) = self.dilation
(stride,) = self.stride
assert stride == 1
self.causal_padding = dilation * (kernel_size - 1)
def forward(self, x):
causal_padded_x = F.pad(x, (self.causal_padding, 0), value=0.0)
return super().forward(causal_padded_x)
class GEGLU(nn.Module):
def forward(self, x):
x, gate = x.chunk(2, dim=-1)
return F.gelu(gate) * x
def FeedForward(dim, mult=4, causal_conv=False):
dim_inner = int(dim * mult * 2 / 3)
conv = None
if causal_conv:
conv = nn.Sequential(
Rearrange("b n d -> b d n"),
CausalConv1d(dim_inner, dim_inner, 3),
Rearrange("b d n -> b n d"),
)
return Sequential(nn.Linear(dim, dim_inner * 2), GEGLU(), conv, nn.Linear(dim_inner, dim))
class PerceiverResampler(nn.Module):
def __init__(
self,
*,
dim,
depth=2,
dim_context=None,
num_latents=32,
dim_head=64,
heads=8,
ff_mult=4,
use_flash_attn=False,
):
super().__init__()
dim_context = default(dim_context, dim)
self.proj_context = nn.Linear(dim_context, dim) if dim_context != dim else nn.Identity()
self.latents = nn.Parameter(torch.randn(num_latents, dim))
nn.init.normal_(self.latents, std=0.02)
self.layers = nn.ModuleList([])
for _ in range(depth):
self.layers.append(
nn.ModuleList(
[
Attention(
dim=dim,
dim_head=dim_head,
heads=heads,
use_flash=use_flash_attn,
cross_attn_include_queries=True,
),
FeedForward(dim=dim, mult=ff_mult),
]
)
)
self.norm = RMSNorm(dim)
def forward(self, x, mask=None):
batch = x.shape[0]
x = self.proj_context(x)
latents = repeat(self.latents, "n d -> b n d", b=batch)
for attn, ff in self.layers:
latents = attn(latents, x, mask=mask) + latents
latents = ff(latents) + latents
return self.norm(latents)
class Attention(nn.Module):
def __init__(
self,
dim,
*,
dim_context=None,
causal=False,
dim_head=64,
heads=8,
dropout=0.0,
use_flash=False,
cross_attn_include_queries=False,
):
super().__init__()
self.scale = dim_head**-0.5
self.heads = heads
self.cross_attn_include_queries = cross_attn_include_queries
dim_inner = dim_head * heads
dim_context = default(dim_context, dim)
self.attend = Attend(causal=causal, dropout=dropout, use_flash=use_flash)
self.to_q = nn.Linear(dim, dim_inner, bias=False)
self.to_kv = nn.Linear(dim_context, dim_inner * 2, bias=False)
self.to_out = nn.Linear(dim_inner, dim, bias=False)
def forward(self, x, context=None, mask=None):
h, has_context = self.heads, exists(context)
context = default(context, x)
if has_context and self.cross_attn_include_queries:
context = torch.cat((x, context), dim=-2)
q, k, v = (self.to_q(x), *self.to_kv(context).chunk(2, dim=-1))
q, k, v = map(lambda t: rearrange(t, "b n (h d) -> b h n d", h=h), (q, k, v))
out = self.attend(q, k, v, mask=mask)
out = rearrange(out, "b h n d -> b n (h d)")
return self.to_out(out)
|