Spaces:
Running
Running
File size: 8,631 Bytes
9b2107c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 |
import numpy as np
import torch
from scipy.stats import betabinom
from torch.nn import functional as F
try:
from TTS.tts.utils.monotonic_align.core import maximum_path_c
CYTHON = True
except ModuleNotFoundError:
CYTHON = False
class StandardScaler:
"""StandardScaler for mean-scale normalization with the given mean and scale values."""
def __init__(self, mean: np.ndarray = None, scale: np.ndarray = None) -> None:
self.mean_ = mean
self.scale_ = scale
def set_stats(self, mean, scale):
self.mean_ = mean
self.scale_ = scale
def reset_stats(self):
delattr(self, "mean_")
delattr(self, "scale_")
def transform(self, X):
X = np.asarray(X)
X -= self.mean_
X /= self.scale_
return X
def inverse_transform(self, X):
X = np.asarray(X)
X *= self.scale_
X += self.mean_
return X
# from https://gist.github.com/jihunchoi/f1434a77df9db1bb337417854b398df1
def sequence_mask(sequence_length, max_len=None):
"""Create a sequence mask for filtering padding in a sequence tensor.
Args:
sequence_length (torch.tensor): Sequence lengths.
max_len (int, Optional): Maximum sequence length. Defaults to None.
Shapes:
- mask: :math:`[B, T_max]`
"""
if max_len is None:
max_len = sequence_length.max()
seq_range = torch.arange(max_len, dtype=sequence_length.dtype, device=sequence_length.device)
# B x T_max
return seq_range.unsqueeze(0) < sequence_length.unsqueeze(1)
def segment(x: torch.tensor, segment_indices: torch.tensor, segment_size=4, pad_short=False):
"""Segment each sample in a batch based on the provided segment indices
Args:
x (torch.tensor): Input tensor.
segment_indices (torch.tensor): Segment indices.
segment_size (int): Expected output segment size.
pad_short (bool): Pad the end of input tensor with zeros if shorter than the segment size.
"""
# pad the input tensor if it is shorter than the segment size
if pad_short and x.shape[-1] < segment_size:
x = torch.nn.functional.pad(x, (0, segment_size - x.size(2)))
segments = torch.zeros_like(x[:, :, :segment_size])
for i in range(x.size(0)):
index_start = segment_indices[i]
index_end = index_start + segment_size
x_i = x[i]
if pad_short and index_end >= x.size(2):
# pad the sample if it is shorter than the segment size
x_i = torch.nn.functional.pad(x_i, (0, (index_end + 1) - x.size(2)))
segments[i] = x_i[:, index_start:index_end]
return segments
def rand_segments(
x: torch.tensor, x_lengths: torch.tensor = None, segment_size=4, let_short_samples=False, pad_short=False
):
"""Create random segments based on the input lengths.
Args:
x (torch.tensor): Input tensor.
x_lengths (torch.tensor): Input lengths.
segment_size (int): Expected output segment size.
let_short_samples (bool): Allow shorter samples than the segment size.
pad_short (bool): Pad the end of input tensor with zeros if shorter than the segment size.
Shapes:
- x: :math:`[B, C, T]`
- x_lengths: :math:`[B]`
"""
_x_lenghts = x_lengths.clone()
B, _, T = x.size()
if pad_short:
if T < segment_size:
x = torch.nn.functional.pad(x, (0, segment_size - T))
T = segment_size
if _x_lenghts is None:
_x_lenghts = T
len_diff = _x_lenghts - segment_size
if let_short_samples:
_x_lenghts[len_diff < 0] = segment_size
len_diff = _x_lenghts - segment_size
else:
assert all(
len_diff > 0
), f" [!] At least one sample is shorter than the segment size ({segment_size}). \n {_x_lenghts}"
segment_indices = (torch.rand([B]).type_as(x) * (len_diff + 1)).long()
ret = segment(x, segment_indices, segment_size, pad_short=pad_short)
return ret, segment_indices
def average_over_durations(values, durs):
"""Average values over durations.
Shapes:
- values: :math:`[B, 1, T_de]`
- durs: :math:`[B, T_en]`
- avg: :math:`[B, 1, T_en]`
"""
durs_cums_ends = torch.cumsum(durs, dim=1).long()
durs_cums_starts = torch.nn.functional.pad(durs_cums_ends[:, :-1], (1, 0))
values_nonzero_cums = torch.nn.functional.pad(torch.cumsum(values != 0.0, dim=2), (1, 0))
values_cums = torch.nn.functional.pad(torch.cumsum(values, dim=2), (1, 0))
bs, l = durs_cums_ends.size()
n_formants = values.size(1)
dcs = durs_cums_starts[:, None, :].expand(bs, n_formants, l)
dce = durs_cums_ends[:, None, :].expand(bs, n_formants, l)
values_sums = (torch.gather(values_cums, 2, dce) - torch.gather(values_cums, 2, dcs)).float()
values_nelems = (torch.gather(values_nonzero_cums, 2, dce) - torch.gather(values_nonzero_cums, 2, dcs)).float()
avg = torch.where(values_nelems == 0.0, values_nelems, values_sums / values_nelems)
return avg
def convert_pad_shape(pad_shape):
l = pad_shape[::-1]
pad_shape = [item for sublist in l for item in sublist]
return pad_shape
def generate_path(duration, mask):
"""
Shapes:
- duration: :math:`[B, T_en]`
- mask: :math:'[B, T_en, T_de]`
- path: :math:`[B, T_en, T_de]`
"""
b, t_x, t_y = mask.shape
cum_duration = torch.cumsum(duration, 1)
cum_duration_flat = cum_duration.view(b * t_x)
path = sequence_mask(cum_duration_flat, t_y).to(mask.dtype)
path = path.view(b, t_x, t_y)
path = path - F.pad(path, convert_pad_shape([[0, 0], [1, 0], [0, 0]]))[:, :-1]
path = path * mask
return path
def maximum_path(value, mask):
if CYTHON:
return maximum_path_cython(value, mask)
return maximum_path_numpy(value, mask)
def maximum_path_cython(value, mask):
"""Cython optimised version.
Shapes:
- value: :math:`[B, T_en, T_de]`
- mask: :math:`[B, T_en, T_de]`
"""
value = value * mask
device = value.device
dtype = value.dtype
value = value.data.cpu().numpy().astype(np.float32)
path = np.zeros_like(value).astype(np.int32)
mask = mask.data.cpu().numpy()
t_x_max = mask.sum(1)[:, 0].astype(np.int32)
t_y_max = mask.sum(2)[:, 0].astype(np.int32)
maximum_path_c(path, value, t_x_max, t_y_max)
return torch.from_numpy(path).to(device=device, dtype=dtype)
def maximum_path_numpy(value, mask, max_neg_val=None):
"""
Monotonic alignment search algorithm
Numpy-friendly version. It's about 4 times faster than torch version.
value: [b, t_x, t_y]
mask: [b, t_x, t_y]
"""
if max_neg_val is None:
max_neg_val = -np.inf # Patch for Sphinx complaint
value = value * mask
device = value.device
dtype = value.dtype
value = value.cpu().detach().numpy()
mask = mask.cpu().detach().numpy().astype(bool)
b, t_x, t_y = value.shape
direction = np.zeros(value.shape, dtype=np.int64)
v = np.zeros((b, t_x), dtype=np.float32)
x_range = np.arange(t_x, dtype=np.float32).reshape(1, -1)
for j in range(t_y):
v0 = np.pad(v, [[0, 0], [1, 0]], mode="constant", constant_values=max_neg_val)[:, :-1]
v1 = v
max_mask = v1 >= v0
v_max = np.where(max_mask, v1, v0)
direction[:, :, j] = max_mask
index_mask = x_range <= j
v = np.where(index_mask, v_max + value[:, :, j], max_neg_val)
direction = np.where(mask, direction, 1)
path = np.zeros(value.shape, dtype=np.float32)
index = mask[:, :, 0].sum(1).astype(np.int64) - 1
index_range = np.arange(b)
for j in reversed(range(t_y)):
path[index_range, index, j] = 1
index = index + direction[index_range, index, j] - 1
path = path * mask.astype(np.float32)
path = torch.from_numpy(path).to(device=device, dtype=dtype)
return path
def beta_binomial_prior_distribution(phoneme_count, mel_count, scaling_factor=1.0):
P, M = phoneme_count, mel_count
x = np.arange(0, P)
mel_text_probs = []
for i in range(1, M + 1):
a, b = scaling_factor * i, scaling_factor * (M + 1 - i)
rv = betabinom(P, a, b)
mel_i_prob = rv.pmf(x)
mel_text_probs.append(mel_i_prob)
return np.array(mel_text_probs)
def compute_attn_prior(x_len, y_len, scaling_factor=1.0):
"""Compute attention priors for the alignment network."""
attn_prior = beta_binomial_prior_distribution(
x_len,
y_len,
scaling_factor,
)
return attn_prior # [y_len, x_len]
|