Spaces:
Running
Running
from dataclasses import dataclass, field | |
from typing import Dict | |
from TTS.vocoder.configs.shared_configs import BaseGANVocoderConfig | |
class UnivnetConfig(BaseGANVocoderConfig): | |
"""Defines parameters for UnivNet vocoder. | |
Example: | |
>>> from TTS.vocoder.configs import UnivNetConfig | |
>>> config = UnivNetConfig() | |
Args: | |
model (str): | |
Model name used for selecting the right model at initialization. Defaults to `UnivNet`. | |
discriminator_model (str): One of the discriminators from `TTS.vocoder.models.*_discriminator`. Defaults to | |
'UnivNet_discriminator`. | |
generator_model (str): One of the generators from TTS.vocoder.models.*`. Every other non-GAN vocoder model is | |
considered as a generator too. Defaults to `UnivNet_generator`. | |
generator_model_params (dict): Parameters of the generator model. Defaults to | |
` | |
{ | |
"use_mel": True, | |
"sample_rate": 22050, | |
"n_fft": 1024, | |
"hop_length": 256, | |
"win_length": 1024, | |
"n_mels": 80, | |
"mel_fmin": 0.0, | |
"mel_fmax": None, | |
} | |
` | |
batch_size (int): | |
Batch size used at training. Larger values use more memory. Defaults to 32. | |
seq_len (int): | |
Audio segment length used at training. Larger values use more memory. Defaults to 8192. | |
pad_short (int): | |
Additional padding applied to the audio samples shorter than `seq_len`. Defaults to 0. | |
use_noise_augment (bool): | |
enable / disable random noise added to the input waveform. The noise is added after computing the | |
features. Defaults to True. | |
use_cache (bool): | |
enable / disable in memory caching of the computed features. It can cause OOM error if the system RAM is | |
not large enough. Defaults to True. | |
use_stft_loss (bool): | |
enable / disable use of STFT loss originally used by ParallelWaveGAN model. Defaults to True. | |
use_subband_stft (bool): | |
enable / disable use of subband loss computation originally used by MultiBandMelgan model. Defaults to True. | |
use_mse_gan_loss (bool): | |
enable / disable using Mean Squeare Error GAN loss. Defaults to True. | |
use_hinge_gan_loss (bool): | |
enable / disable using Hinge GAN loss. You should choose either Hinge or MSE loss for training GAN models. | |
Defaults to False. | |
use_feat_match_loss (bool): | |
enable / disable using Feature Matching loss originally used by MelGAN model. Defaults to True. | |
use_l1_spec_loss (bool): | |
enable / disable using L1 spectrogram loss originally used by univnet model. Defaults to False. | |
stft_loss_params (dict): | |
STFT loss parameters. Default to | |
`{ | |
"n_ffts": [1024, 2048, 512], | |
"hop_lengths": [120, 240, 50], | |
"win_lengths": [600, 1200, 240] | |
}` | |
l1_spec_loss_params (dict): | |
L1 spectrogram loss parameters. Default to | |
`{ | |
"use_mel": True, | |
"sample_rate": 22050, | |
"n_fft": 1024, | |
"hop_length": 256, | |
"win_length": 1024, | |
"n_mels": 80, | |
"mel_fmin": 0.0, | |
"mel_fmax": None, | |
}` | |
stft_loss_weight (float): STFT loss weight that multiplies the computed loss before summing up the total | |
model loss. Defaults to 0.5. | |
subband_stft_loss_weight (float): | |
Subband STFT loss weight that multiplies the computed loss before summing up the total loss. Defaults to 0. | |
mse_G_loss_weight (float): | |
MSE generator loss weight that multiplies the computed loss before summing up the total loss. faults to 2.5. | |
hinge_G_loss_weight (float): | |
Hinge generator loss weight that multiplies the computed loss before summing up the total loss. Defaults to 0. | |
feat_match_loss_weight (float): | |
Feature matching loss weight that multiplies the computed loss before summing up the total loss. faults to 108. | |
l1_spec_loss_weight (float): | |
L1 spectrogram loss weight that multiplies the computed loss before summing up the total loss. Defaults to 0. | |
""" | |
model: str = "univnet" | |
batch_size: int = 32 | |
# model specific params | |
discriminator_model: str = "univnet_discriminator" | |
generator_model: str = "univnet_generator" | |
generator_model_params: Dict = field( | |
default_factory=lambda: { | |
"in_channels": 64, | |
"out_channels": 1, | |
"hidden_channels": 32, | |
"cond_channels": 80, | |
"upsample_factors": [8, 8, 4], | |
"lvc_layers_each_block": 4, | |
"lvc_kernel_size": 3, | |
"kpnet_hidden_channels": 64, | |
"kpnet_conv_size": 3, | |
"dropout": 0.0, | |
} | |
) | |
# LOSS PARAMETERS - overrides | |
use_stft_loss: bool = True | |
use_subband_stft_loss: bool = False | |
use_mse_gan_loss: bool = True | |
use_hinge_gan_loss: bool = False | |
use_feat_match_loss: bool = False # requires MelGAN Discriminators (MelGAN and univnet) | |
use_l1_spec_loss: bool = False | |
# loss weights - overrides | |
stft_loss_weight: float = 2.5 | |
stft_loss_params: Dict = field( | |
default_factory=lambda: { | |
"n_ffts": [1024, 2048, 512], | |
"hop_lengths": [120, 240, 50], | |
"win_lengths": [600, 1200, 240], | |
} | |
) | |
subband_stft_loss_weight: float = 0 | |
mse_G_loss_weight: float = 1 | |
hinge_G_loss_weight: float = 0 | |
feat_match_loss_weight: float = 0 | |
l1_spec_loss_weight: float = 0 | |
l1_spec_loss_params: Dict = field( | |
default_factory=lambda: { | |
"use_mel": True, | |
"sample_rate": 22050, | |
"n_fft": 1024, | |
"hop_length": 256, | |
"win_length": 1024, | |
"n_mels": 80, | |
"mel_fmin": 0.0, | |
"mel_fmax": None, | |
} | |
) | |
# optimizer parameters | |
lr_gen: float = 1e-4 # Initial learning rate. | |
lr_disc: float = 1e-4 # Initial learning rate. | |
lr_scheduler_gen: str = None # one of the schedulers from https:#pytorch.org/docs/stable/optim.html | |
# lr_scheduler_gen_params: dict = field(default_factory=lambda: {"gamma": 0.999, "last_epoch": -1}) | |
lr_scheduler_disc: str = None # one of the schedulers from https:#pytorch.org/docs/stable/optim.html | |
# lr_scheduler_disc_params: dict = field(default_factory=lambda: {"gamma": 0.999, "last_epoch": -1}) | |
optimizer_params: Dict = field(default_factory=lambda: {"betas": [0.5, 0.9], "weight_decay": 0.0}) | |
steps_to_start_discriminator: int = 200000 | |
def __post_init__(self): | |
super().__post_init__() | |
self.generator_model_params["cond_channels"] = self.audio.num_mels | |