Spaces:
Running
Running
from torch import nn | |
from TTS.vocoder.models.melgan_discriminator import MelganDiscriminator | |
class MelganMultiscaleDiscriminator(nn.Module): | |
def __init__( | |
self, | |
in_channels=1, | |
out_channels=1, | |
num_scales=3, | |
kernel_sizes=(5, 3), | |
base_channels=16, | |
max_channels=1024, | |
downsample_factors=(4, 4, 4), | |
pooling_kernel_size=4, | |
pooling_stride=2, | |
pooling_padding=2, | |
groups_denominator=4, | |
): | |
super().__init__() | |
self.discriminators = nn.ModuleList( | |
[ | |
MelganDiscriminator( | |
in_channels=in_channels, | |
out_channels=out_channels, | |
kernel_sizes=kernel_sizes, | |
base_channels=base_channels, | |
max_channels=max_channels, | |
downsample_factors=downsample_factors, | |
groups_denominator=groups_denominator, | |
) | |
for _ in range(num_scales) | |
] | |
) | |
self.pooling = nn.AvgPool1d( | |
kernel_size=pooling_kernel_size, stride=pooling_stride, padding=pooling_padding, count_include_pad=False | |
) | |
def forward(self, x): | |
scores = [] | |
feats = [] | |
for disc in self.discriminators: | |
score, feat = disc(x) | |
scores.append(score) | |
feats.append(feat) | |
x = self.pooling(x) | |
return scores, feats | |