Spaces:
Running
Running
import argparse | |
import os | |
from argparse import RawTextHelpFormatter | |
import torch | |
from tqdm import tqdm | |
from TTS.config import load_config | |
from TTS.config.shared_configs import BaseDatasetConfig | |
from TTS.tts.datasets import load_tts_samples | |
from TTS.tts.utils.managers import save_file | |
from TTS.tts.utils.speakers import SpeakerManager | |
def compute_embeddings( | |
model_path, | |
config_path, | |
output_path, | |
old_speakers_file=None, | |
old_append=False, | |
config_dataset_path=None, | |
formatter_name=None, | |
dataset_name=None, | |
dataset_path=None, | |
meta_file_train=None, | |
meta_file_val=None, | |
disable_cuda=False, | |
no_eval=False, | |
): | |
use_cuda = torch.cuda.is_available() and not disable_cuda | |
if config_dataset_path is not None: | |
c_dataset = load_config(config_dataset_path) | |
meta_data_train, meta_data_eval = load_tts_samples(c_dataset.datasets, eval_split=not no_eval) | |
else: | |
c_dataset = BaseDatasetConfig() | |
c_dataset.formatter = formatter_name | |
c_dataset.dataset_name = dataset_name | |
c_dataset.path = dataset_path | |
if meta_file_train is not None: | |
c_dataset.meta_file_train = meta_file_train | |
if meta_file_val is not None: | |
c_dataset.meta_file_val = meta_file_val | |
meta_data_train, meta_data_eval = load_tts_samples(c_dataset, eval_split=not no_eval) | |
if meta_data_eval is None: | |
samples = meta_data_train | |
else: | |
samples = meta_data_train + meta_data_eval | |
encoder_manager = SpeakerManager( | |
encoder_model_path=model_path, | |
encoder_config_path=config_path, | |
d_vectors_file_path=old_speakers_file, | |
use_cuda=use_cuda, | |
) | |
class_name_key = encoder_manager.encoder_config.class_name_key | |
# compute speaker embeddings | |
if old_speakers_file is not None and old_append: | |
speaker_mapping = encoder_manager.embeddings | |
else: | |
speaker_mapping = {} | |
for fields in tqdm(samples): | |
class_name = fields[class_name_key] | |
audio_file = fields["audio_file"] | |
embedding_key = fields["audio_unique_name"] | |
# Only update the speaker name when the embedding is already in the old file. | |
if embedding_key in speaker_mapping: | |
speaker_mapping[embedding_key]["name"] = class_name | |
continue | |
if old_speakers_file is not None and embedding_key in encoder_manager.clip_ids: | |
# get the embedding from the old file | |
embedd = encoder_manager.get_embedding_by_clip(embedding_key) | |
else: | |
# extract the embedding | |
embedd = encoder_manager.compute_embedding_from_clip(audio_file) | |
# create speaker_mapping if target dataset is defined | |
speaker_mapping[embedding_key] = {} | |
speaker_mapping[embedding_key]["name"] = class_name | |
speaker_mapping[embedding_key]["embedding"] = embedd | |
if speaker_mapping: | |
# save speaker_mapping if target dataset is defined | |
if os.path.isdir(output_path): | |
mapping_file_path = os.path.join(output_path, "speakers.pth") | |
else: | |
mapping_file_path = output_path | |
if os.path.dirname(mapping_file_path) != "": | |
os.makedirs(os.path.dirname(mapping_file_path), exist_ok=True) | |
save_file(speaker_mapping, mapping_file_path) | |
print("Speaker embeddings saved at:", mapping_file_path) | |
if __name__ == "__main__": | |
parser = argparse.ArgumentParser( | |
description="""Compute embedding vectors for each audio file in a dataset and store them keyed by `{dataset_name}#{file_path}` in a .pth file\n\n""" | |
""" | |
Example runs: | |
python TTS/bin/compute_embeddings.py --model_path speaker_encoder_model.pth --config_path speaker_encoder_config.json --config_dataset_path dataset_config.json | |
python TTS/bin/compute_embeddings.py --model_path speaker_encoder_model.pth --config_path speaker_encoder_config.json --formatter_name coqui --dataset_path /path/to/vctk/dataset --dataset_name my_vctk --meta_file_train /path/to/vctk/metafile_train.csv --meta_file_val /path/to/vctk/metafile_eval.csv | |
""", | |
formatter_class=RawTextHelpFormatter, | |
) | |
parser.add_argument( | |
"--model_path", | |
type=str, | |
help="Path to model checkpoint file. It defaults to the released speaker encoder.", | |
default="https://github.com/coqui-ai/TTS/releases/download/speaker_encoder_model/model_se.pth.tar", | |
) | |
parser.add_argument( | |
"--config_path", | |
type=str, | |
help="Path to model config file. It defaults to the released speaker encoder config.", | |
default="https://github.com/coqui-ai/TTS/releases/download/speaker_encoder_model/config_se.json", | |
) | |
parser.add_argument( | |
"--config_dataset_path", | |
type=str, | |
help="Path to dataset config file. You either need to provide this or `formatter_name`, `dataset_name` and `dataset_path` arguments.", | |
default=None, | |
) | |
parser.add_argument( | |
"--output_path", | |
type=str, | |
help="Path for output `pth` or `json` file.", | |
default="speakers.pth", | |
) | |
parser.add_argument( | |
"--old_file", | |
type=str, | |
help="The old existing embedding file, from which the embeddings will be directly loaded for already computed audio clips.", | |
default=None, | |
) | |
parser.add_argument( | |
"--old_append", | |
help="Append new audio clip embeddings to the old embedding file, generate a new non-duplicated merged embedding file. Default False", | |
default=False, | |
action="store_true", | |
) | |
parser.add_argument("--disable_cuda", type=bool, help="Flag to disable cuda.", default=False) | |
parser.add_argument("--no_eval", help="Do not compute eval?. Default False", default=False, action="store_true") | |
parser.add_argument( | |
"--formatter_name", | |
type=str, | |
help="Name of the formatter to use. You either need to provide this or `config_dataset_path`", | |
default=None, | |
) | |
parser.add_argument( | |
"--dataset_name", | |
type=str, | |
help="Name of the dataset to use. You either need to provide this or `config_dataset_path`", | |
default=None, | |
) | |
parser.add_argument( | |
"--dataset_path", | |
type=str, | |
help="Path to the dataset. You either need to provide this or `config_dataset_path`", | |
default=None, | |
) | |
parser.add_argument( | |
"--meta_file_train", | |
type=str, | |
help="Path to the train meta file. If not set, dataset formatter uses the default metafile if it is defined in the formatter. You either need to provide this or `config_dataset_path`", | |
default=None, | |
) | |
parser.add_argument( | |
"--meta_file_val", | |
type=str, | |
help="Path to the evaluation meta file. If not set, dataset formatter uses the default metafile if it is defined in the formatter. You either need to provide this or `config_dataset_path`", | |
default=None, | |
) | |
args = parser.parse_args() | |
compute_embeddings( | |
args.model_path, | |
args.config_path, | |
args.output_path, | |
old_speakers_file=args.old_file, | |
old_append=args.old_append, | |
config_dataset_path=args.config_dataset_path, | |
formatter_name=args.formatter_name, | |
dataset_name=args.dataset_name, | |
dataset_path=args.dataset_path, | |
meta_file_train=args.meta_file_train, | |
meta_file_val=args.meta_file_val, | |
disable_cuda=args.disable_cuda, | |
no_eval=args.no_eval, | |
) | |