Spaces:
Running
Running
#!/usr/bin/env python3 | |
# -*- coding: utf-8 -*- | |
import argparse | |
import glob | |
import os | |
import numpy as np | |
from tqdm import tqdm | |
# from TTS.utils.io import load_config | |
from TTS.config import load_config | |
from TTS.tts.datasets import load_tts_samples | |
from TTS.utils.audio import AudioProcessor | |
def main(): | |
"""Run preprocessing process.""" | |
parser = argparse.ArgumentParser(description="Compute mean and variance of spectrogtram features.") | |
parser.add_argument("config_path", type=str, help="TTS config file path to define audio processin parameters.") | |
parser.add_argument("out_path", type=str, help="save path (directory and filename).") | |
parser.add_argument( | |
"--data_path", | |
type=str, | |
required=False, | |
help="folder including the target set of wavs overriding dataset config.", | |
) | |
args, overrides = parser.parse_known_args() | |
CONFIG = load_config(args.config_path) | |
CONFIG.parse_known_args(overrides, relaxed_parser=True) | |
# load config | |
CONFIG.audio.signal_norm = False # do not apply earlier normalization | |
CONFIG.audio.stats_path = None # discard pre-defined stats | |
# load audio processor | |
ap = AudioProcessor(**CONFIG.audio.to_dict()) | |
# load the meta data of target dataset | |
if args.data_path: | |
dataset_items = glob.glob(os.path.join(args.data_path, "**", "*.wav"), recursive=True) | |
else: | |
dataset_items = load_tts_samples(CONFIG.datasets)[0] # take only train data | |
print(f" > There are {len(dataset_items)} files.") | |
mel_sum = 0 | |
mel_square_sum = 0 | |
linear_sum = 0 | |
linear_square_sum = 0 | |
N = 0 | |
for item in tqdm(dataset_items): | |
# compute features | |
wav = ap.load_wav(item if isinstance(item, str) else item["audio_file"]) | |
linear = ap.spectrogram(wav) | |
mel = ap.melspectrogram(wav) | |
# compute stats | |
N += mel.shape[1] | |
mel_sum += mel.sum(1) | |
linear_sum += linear.sum(1) | |
mel_square_sum += (mel**2).sum(axis=1) | |
linear_square_sum += (linear**2).sum(axis=1) | |
mel_mean = mel_sum / N | |
mel_scale = np.sqrt(mel_square_sum / N - mel_mean**2) | |
linear_mean = linear_sum / N | |
linear_scale = np.sqrt(linear_square_sum / N - linear_mean**2) | |
output_file_path = args.out_path | |
stats = {} | |
stats["mel_mean"] = mel_mean | |
stats["mel_std"] = mel_scale | |
stats["linear_mean"] = linear_mean | |
stats["linear_std"] = linear_scale | |
print(f" > Avg mel spec mean: {mel_mean.mean()}") | |
print(f" > Avg mel spec scale: {mel_scale.mean()}") | |
print(f" > Avg linear spec mean: {linear_mean.mean()}") | |
print(f" > Avg linear spec scale: {linear_scale.mean()}") | |
# set default config values for mean-var scaling | |
CONFIG.audio.stats_path = output_file_path | |
CONFIG.audio.signal_norm = True | |
# remove redundant values | |
del CONFIG.audio.max_norm | |
del CONFIG.audio.min_level_db | |
del CONFIG.audio.symmetric_norm | |
del CONFIG.audio.clip_norm | |
stats["audio_config"] = CONFIG.audio.to_dict() | |
np.save(output_file_path, stats, allow_pickle=True) | |
print(f" > stats saved to {output_file_path}") | |
if __name__ == "__main__": | |
main() | |