Spaces:
Running
Running
#!/usr/bin/env python3 | |
# -*- coding: utf-8 -*- | |
import argparse | |
import contextlib | |
import sys | |
from argparse import RawTextHelpFormatter | |
# pylint: disable=redefined-outer-name, unused-argument | |
from pathlib import Path | |
description = """ | |
Synthesize speech on command line. | |
You can either use your trained model or choose a model from the provided list. | |
If you don't specify any models, then it uses LJSpeech based English model. | |
#### Single Speaker Models | |
- List provided models: | |
``` | |
$ tts --list_models | |
``` | |
- Get model info (for both tts_models and vocoder_models): | |
- Query by type/name: | |
The model_info_by_name uses the name as it from the --list_models. | |
``` | |
$ tts --model_info_by_name "<model_type>/<language>/<dataset>/<model_name>" | |
``` | |
For example: | |
``` | |
$ tts --model_info_by_name tts_models/tr/common-voice/glow-tts | |
$ tts --model_info_by_name vocoder_models/en/ljspeech/hifigan_v2 | |
``` | |
- Query by type/idx: | |
The model_query_idx uses the corresponding idx from --list_models. | |
``` | |
$ tts --model_info_by_idx "<model_type>/<model_query_idx>" | |
``` | |
For example: | |
``` | |
$ tts --model_info_by_idx tts_models/3 | |
``` | |
- Query info for model info by full name: | |
``` | |
$ tts --model_info_by_name "<model_type>/<language>/<dataset>/<model_name>" | |
``` | |
- Run TTS with default models: | |
``` | |
$ tts --text "Text for TTS" --out_path output/path/speech.wav | |
``` | |
- Run TTS and pipe out the generated TTS wav file data: | |
``` | |
$ tts --text "Text for TTS" --pipe_out --out_path output/path/speech.wav | aplay | |
``` | |
- Run TTS and define speed factor to use for 🐸Coqui Studio models, between 0.0 and 2.0: | |
``` | |
$ tts --text "Text for TTS" --model_name "coqui_studio/<language>/<dataset>/<model_name>" --speed 1.2 --out_path output/path/speech.wav | |
``` | |
- Run a TTS model with its default vocoder model: | |
``` | |
$ tts --text "Text for TTS" --model_name "<model_type>/<language>/<dataset>/<model_name>" --out_path output/path/speech.wav | |
``` | |
For example: | |
``` | |
$ tts --text "Text for TTS" --model_name "tts_models/en/ljspeech/glow-tts" --out_path output/path/speech.wav | |
``` | |
- Run with specific TTS and vocoder models from the list: | |
``` | |
$ tts --text "Text for TTS" --model_name "<model_type>/<language>/<dataset>/<model_name>" --vocoder_name "<model_type>/<language>/<dataset>/<model_name>" --out_path output/path/speech.wav | |
``` | |
For example: | |
``` | |
$ tts --text "Text for TTS" --model_name "tts_models/en/ljspeech/glow-tts" --vocoder_name "vocoder_models/en/ljspeech/univnet" --out_path output/path/speech.wav | |
``` | |
- Run your own TTS model (Using Griffin-Lim Vocoder): | |
``` | |
$ tts --text "Text for TTS" --model_path path/to/model.pth --config_path path/to/config.json --out_path output/path/speech.wav | |
``` | |
- Run your own TTS and Vocoder models: | |
``` | |
$ tts --text "Text for TTS" --model_path path/to/model.pth --config_path path/to/config.json --out_path output/path/speech.wav | |
--vocoder_path path/to/vocoder.pth --vocoder_config_path path/to/vocoder_config.json | |
``` | |
#### Multi-speaker Models | |
- List the available speakers and choose a <speaker_id> among them: | |
``` | |
$ tts --model_name "<language>/<dataset>/<model_name>" --list_speaker_idxs | |
``` | |
- Run the multi-speaker TTS model with the target speaker ID: | |
``` | |
$ tts --text "Text for TTS." --out_path output/path/speech.wav --model_name "<language>/<dataset>/<model_name>" --speaker_idx <speaker_id> | |
``` | |
- Run your own multi-speaker TTS model: | |
``` | |
$ tts --text "Text for TTS" --out_path output/path/speech.wav --model_path path/to/model.pth --config_path path/to/config.json --speakers_file_path path/to/speaker.json --speaker_idx <speaker_id> | |
``` | |
### Voice Conversion Models | |
``` | |
$ tts --out_path output/path/speech.wav --model_name "<language>/<dataset>/<model_name>" --source_wav <path/to/speaker/wav> --target_wav <path/to/reference/wav> | |
``` | |
""" | |
def str2bool(v): | |
if isinstance(v, bool): | |
return v | |
if v.lower() in ("yes", "true", "t", "y", "1"): | |
return True | |
if v.lower() in ("no", "false", "f", "n", "0"): | |
return False | |
raise argparse.ArgumentTypeError("Boolean value expected.") | |
def main(): | |
parser = argparse.ArgumentParser( | |
description=description.replace(" ```\n", ""), | |
formatter_class=RawTextHelpFormatter, | |
) | |
parser.add_argument( | |
"--list_models", | |
type=str2bool, | |
nargs="?", | |
const=True, | |
default=False, | |
help="list available pre-trained TTS and vocoder models.", | |
) | |
parser.add_argument( | |
"--model_info_by_idx", | |
type=str, | |
default=None, | |
help="model info using query format: <model_type>/<model_query_idx>", | |
) | |
parser.add_argument( | |
"--model_info_by_name", | |
type=str, | |
default=None, | |
help="model info using query format: <model_type>/<language>/<dataset>/<model_name>", | |
) | |
parser.add_argument("--text", type=str, default=None, help="Text to generate speech.") | |
# Args for running pre-trained TTS models. | |
parser.add_argument( | |
"--model_name", | |
type=str, | |
default="tts_models/en/ljspeech/tacotron2-DDC", | |
help="Name of one of the pre-trained TTS models in format <language>/<dataset>/<model_name>", | |
) | |
parser.add_argument( | |
"--vocoder_name", | |
type=str, | |
default=None, | |
help="Name of one of the pre-trained vocoder models in format <language>/<dataset>/<model_name>", | |
) | |
# Args for running custom models | |
parser.add_argument("--config_path", default=None, type=str, help="Path to model config file.") | |
parser.add_argument( | |
"--model_path", | |
type=str, | |
default=None, | |
help="Path to model file.", | |
) | |
parser.add_argument( | |
"--out_path", | |
type=str, | |
default="tts_output.wav", | |
help="Output wav file path.", | |
) | |
parser.add_argument("--use_cuda", type=bool, help="Run model on CUDA.", default=False) | |
parser.add_argument("--device", type=str, help="Device to run model on.", default="cpu") | |
parser.add_argument( | |
"--vocoder_path", | |
type=str, | |
help="Path to vocoder model file. If it is not defined, model uses GL as vocoder. Please make sure that you installed vocoder library before (WaveRNN).", | |
default=None, | |
) | |
parser.add_argument("--vocoder_config_path", type=str, help="Path to vocoder model config file.", default=None) | |
parser.add_argument( | |
"--encoder_path", | |
type=str, | |
help="Path to speaker encoder model file.", | |
default=None, | |
) | |
parser.add_argument("--encoder_config_path", type=str, help="Path to speaker encoder config file.", default=None) | |
# args for coqui studio | |
parser.add_argument( | |
"--cs_model", | |
type=str, | |
help="Name of the 🐸Coqui Studio model. Available models are `XTTS`, `V1`.", | |
) | |
parser.add_argument( | |
"--emotion", | |
type=str, | |
help="Emotion to condition the model with. Only available for 🐸Coqui Studio `V1` model.", | |
default=None, | |
) | |
parser.add_argument( | |
"--language", | |
type=str, | |
help="Language to condition the model with. Only available for 🐸Coqui Studio `XTTS` model.", | |
default=None, | |
) | |
parser.add_argument( | |
"--pipe_out", | |
help="stdout the generated TTS wav file for shell pipe.", | |
type=str2bool, | |
nargs="?", | |
const=True, | |
default=False, | |
) | |
parser.add_argument( | |
"--speed", | |
type=float, | |
help="Speed factor to use for 🐸Coqui Studio models, between 0.0 and 2.0.", | |
default=None, | |
) | |
# args for multi-speaker synthesis | |
parser.add_argument("--speakers_file_path", type=str, help="JSON file for multi-speaker model.", default=None) | |
parser.add_argument("--language_ids_file_path", type=str, help="JSON file for multi-lingual model.", default=None) | |
parser.add_argument( | |
"--speaker_idx", | |
type=str, | |
help="Target speaker ID for a multi-speaker TTS model.", | |
default=None, | |
) | |
parser.add_argument( | |
"--language_idx", | |
type=str, | |
help="Target language ID for a multi-lingual TTS model.", | |
default=None, | |
) | |
parser.add_argument( | |
"--speaker_wav", | |
nargs="+", | |
help="wav file(s) to condition a multi-speaker TTS model with a Speaker Encoder. You can give multiple file paths. The d_vectors is computed as their average.", | |
default=None, | |
) | |
parser.add_argument("--gst_style", help="Wav path file for GST style reference.", default=None) | |
parser.add_argument( | |
"--capacitron_style_wav", type=str, help="Wav path file for Capacitron prosody reference.", default=None | |
) | |
parser.add_argument("--capacitron_style_text", type=str, help="Transcription of the reference.", default=None) | |
parser.add_argument( | |
"--list_speaker_idxs", | |
help="List available speaker ids for the defined multi-speaker model.", | |
type=str2bool, | |
nargs="?", | |
const=True, | |
default=False, | |
) | |
parser.add_argument( | |
"--list_language_idxs", | |
help="List available language ids for the defined multi-lingual model.", | |
type=str2bool, | |
nargs="?", | |
const=True, | |
default=False, | |
) | |
# aux args | |
parser.add_argument( | |
"--save_spectogram", | |
type=bool, | |
help="If true save raw spectogram for further (vocoder) processing in out_path.", | |
default=False, | |
) | |
parser.add_argument( | |
"--reference_wav", | |
type=str, | |
help="Reference wav file to convert in the voice of the speaker_idx or speaker_wav", | |
default=None, | |
) | |
parser.add_argument( | |
"--reference_speaker_idx", | |
type=str, | |
help="speaker ID of the reference_wav speaker (If not provided the embedding will be computed using the Speaker Encoder).", | |
default=None, | |
) | |
parser.add_argument( | |
"--progress_bar", | |
type=str2bool, | |
help="If true shows a progress bar for the model download. Defaults to True", | |
default=True, | |
) | |
# voice conversion args | |
parser.add_argument( | |
"--source_wav", | |
type=str, | |
default=None, | |
help="Original audio file to convert in the voice of the target_wav", | |
) | |
parser.add_argument( | |
"--target_wav", | |
type=str, | |
default=None, | |
help="Target audio file to convert in the voice of the source_wav", | |
) | |
parser.add_argument( | |
"--voice_dir", | |
type=str, | |
default=None, | |
help="Voice dir for tortoise model", | |
) | |
args = parser.parse_args() | |
# print the description if either text or list_models is not set | |
check_args = [ | |
args.text, | |
args.list_models, | |
args.list_speaker_idxs, | |
args.list_language_idxs, | |
args.reference_wav, | |
args.model_info_by_idx, | |
args.model_info_by_name, | |
args.source_wav, | |
args.target_wav, | |
] | |
if not any(check_args): | |
parser.parse_args(["-h"]) | |
pipe_out = sys.stdout if args.pipe_out else None | |
with contextlib.redirect_stdout(None if args.pipe_out else sys.stdout): | |
# Late-import to make things load faster | |
from TTS.api import TTS | |
from TTS.utils.manage import ModelManager | |
from TTS.utils.synthesizer import Synthesizer | |
# load model manager | |
path = Path(__file__).parent / "../.models.json" | |
manager = ModelManager(path, progress_bar=args.progress_bar) | |
api = TTS() | |
tts_path = None | |
tts_config_path = None | |
speakers_file_path = None | |
language_ids_file_path = None | |
vocoder_path = None | |
vocoder_config_path = None | |
encoder_path = None | |
encoder_config_path = None | |
vc_path = None | |
vc_config_path = None | |
model_dir = None | |
# CASE1 #list : list pre-trained TTS models | |
if args.list_models: | |
manager.add_cs_api_models(api.list_models()) | |
manager.list_models() | |
sys.exit() | |
# CASE2 #info : model info for pre-trained TTS models | |
if args.model_info_by_idx: | |
model_query = args.model_info_by_idx | |
manager.model_info_by_idx(model_query) | |
sys.exit() | |
if args.model_info_by_name: | |
model_query_full_name = args.model_info_by_name | |
manager.model_info_by_full_name(model_query_full_name) | |
sys.exit() | |
# CASE3: TTS with coqui studio models | |
if "coqui_studio" in args.model_name: | |
print(" > Using 🐸Coqui Studio model: ", args.model_name) | |
api = TTS(model_name=args.model_name, cs_api_model=args.cs_model) | |
api.tts_to_file( | |
text=args.text, | |
emotion=args.emotion, | |
file_path=args.out_path, | |
language=args.language, | |
speed=args.speed, | |
pipe_out=pipe_out, | |
) | |
print(" > Saving output to ", args.out_path) | |
return | |
# CASE4: load pre-trained model paths | |
if args.model_name is not None and not args.model_path: | |
model_path, config_path, model_item = manager.download_model(args.model_name) | |
# tts model | |
if model_item["model_type"] == "tts_models": | |
tts_path = model_path | |
tts_config_path = config_path | |
if "default_vocoder" in model_item: | |
args.vocoder_name = ( | |
model_item["default_vocoder"] if args.vocoder_name is None else args.vocoder_name | |
) | |
# voice conversion model | |
if model_item["model_type"] == "voice_conversion_models": | |
vc_path = model_path | |
vc_config_path = config_path | |
# tts model with multiple files to be loaded from the directory path | |
if model_item.get("author", None) == "fairseq" or isinstance(model_item["model_url"], list): | |
model_dir = model_path | |
tts_path = None | |
tts_config_path = None | |
args.vocoder_name = None | |
# load vocoder | |
if args.vocoder_name is not None and not args.vocoder_path: | |
vocoder_path, vocoder_config_path, _ = manager.download_model(args.vocoder_name) | |
# CASE5: set custom model paths | |
if args.model_path is not None: | |
tts_path = args.model_path | |
tts_config_path = args.config_path | |
speakers_file_path = args.speakers_file_path | |
language_ids_file_path = args.language_ids_file_path | |
if args.vocoder_path is not None: | |
vocoder_path = args.vocoder_path | |
vocoder_config_path = args.vocoder_config_path | |
if args.encoder_path is not None: | |
encoder_path = args.encoder_path | |
encoder_config_path = args.encoder_config_path | |
device = args.device | |
if args.use_cuda: | |
device = "cuda" | |
# load models | |
synthesizer = Synthesizer( | |
tts_path, | |
tts_config_path, | |
speakers_file_path, | |
language_ids_file_path, | |
vocoder_path, | |
vocoder_config_path, | |
encoder_path, | |
encoder_config_path, | |
vc_path, | |
vc_config_path, | |
model_dir, | |
args.voice_dir, | |
).to(device) | |
# query speaker ids of a multi-speaker model. | |
if args.list_speaker_idxs: | |
print( | |
" > Available speaker ids: (Set --speaker_idx flag to one of these values to use the multi-speaker model." | |
) | |
print(synthesizer.tts_model.speaker_manager.name_to_id) | |
return | |
# query langauge ids of a multi-lingual model. | |
if args.list_language_idxs: | |
print( | |
" > Available language ids: (Set --language_idx flag to one of these values to use the multi-lingual model." | |
) | |
print(synthesizer.tts_model.language_manager.name_to_id) | |
return | |
# check the arguments against a multi-speaker model. | |
if synthesizer.tts_speakers_file and (not args.speaker_idx and not args.speaker_wav): | |
print( | |
" [!] Looks like you use a multi-speaker model. Define `--speaker_idx` to " | |
"select the target speaker. You can list the available speakers for this model by `--list_speaker_idxs`." | |
) | |
return | |
# RUN THE SYNTHESIS | |
if args.text: | |
print(" > Text: {}".format(args.text)) | |
# kick it | |
if tts_path is not None: | |
wav = synthesizer.tts( | |
args.text, | |
speaker_name=args.speaker_idx, | |
language_name=args.language_idx, | |
speaker_wav=args.speaker_wav, | |
reference_wav=args.reference_wav, | |
style_wav=args.capacitron_style_wav, | |
style_text=args.capacitron_style_text, | |
reference_speaker_name=args.reference_speaker_idx, | |
) | |
elif vc_path is not None: | |
wav = synthesizer.voice_conversion( | |
source_wav=args.source_wav, | |
target_wav=args.target_wav, | |
) | |
elif model_dir is not None: | |
wav = synthesizer.tts( | |
args.text, speaker_name=args.speaker_idx, language_name=args.language_idx, speaker_wav=args.speaker_wav | |
) | |
# save the results | |
print(" > Saving output to {}".format(args.out_path)) | |
synthesizer.save_wav(wav, args.out_path, pipe_out=pipe_out) | |
if __name__ == "__main__": | |
main() | |