Spaces:
Running
Running
import functools | |
from math import sqrt | |
import torch | |
import torch.distributed as distributed | |
import torch.nn as nn | |
import torch.nn.functional as F | |
import torchaudio | |
from einops import rearrange | |
def default(val, d): | |
return val if val is not None else d | |
def eval_decorator(fn): | |
def inner(model, *args, **kwargs): | |
was_training = model.training | |
model.eval() | |
out = fn(model, *args, **kwargs) | |
model.train(was_training) | |
return out | |
return inner | |
def dvae_wav_to_mel( | |
wav, mel_norms_file="../experiments/clips_mel_norms.pth", mel_norms=None, device=torch.device("cpu") | |
): | |
mel_stft = torchaudio.transforms.MelSpectrogram( | |
n_fft=1024, | |
hop_length=256, | |
win_length=1024, | |
power=2, | |
normalized=False, | |
sample_rate=22050, | |
f_min=0, | |
f_max=8000, | |
n_mels=80, | |
norm="slaney", | |
).to(device) | |
wav = wav.to(device) | |
mel = mel_stft(wav) | |
mel = torch.log(torch.clamp(mel, min=1e-5)) | |
if mel_norms is None: | |
mel_norms = torch.load(mel_norms_file, map_location=device) | |
mel = mel / mel_norms.unsqueeze(0).unsqueeze(-1) | |
return mel | |
class Quantize(nn.Module): | |
def __init__(self, dim, n_embed, decay=0.99, eps=1e-5, balancing_heuristic=False, new_return_order=False): | |
super().__init__() | |
self.dim = dim | |
self.n_embed = n_embed | |
self.decay = decay | |
self.eps = eps | |
self.balancing_heuristic = balancing_heuristic | |
self.codes = None | |
self.max_codes = 64000 | |
self.codes_full = False | |
self.new_return_order = new_return_order | |
embed = torch.randn(dim, n_embed) | |
self.register_buffer("embed", embed) | |
self.register_buffer("cluster_size", torch.zeros(n_embed)) | |
self.register_buffer("embed_avg", embed.clone()) | |
def forward(self, input, return_soft_codes=False): | |
if self.balancing_heuristic and self.codes_full: | |
h = torch.histc(self.codes, bins=self.n_embed, min=0, max=self.n_embed) / len(self.codes) | |
mask = torch.logical_or(h > 0.9, h < 0.01).unsqueeze(1) | |
ep = self.embed.permute(1, 0) | |
ea = self.embed_avg.permute(1, 0) | |
rand_embed = torch.randn_like(ep) * mask | |
self.embed = (ep * ~mask + rand_embed).permute(1, 0) | |
self.embed_avg = (ea * ~mask + rand_embed).permute(1, 0) | |
self.cluster_size = self.cluster_size * ~mask.squeeze() | |
if torch.any(mask): | |
print(f"Reset {torch.sum(mask)} embedding codes.") | |
self.codes = None | |
self.codes_full = False | |
flatten = input.reshape(-1, self.dim) | |
dist = flatten.pow(2).sum(1, keepdim=True) - 2 * flatten @ self.embed + self.embed.pow(2).sum(0, keepdim=True) | |
soft_codes = -dist | |
_, embed_ind = soft_codes.max(1) | |
embed_onehot = F.one_hot(embed_ind, self.n_embed).type(flatten.dtype) | |
embed_ind = embed_ind.view(*input.shape[:-1]) | |
quantize = self.embed_code(embed_ind) | |
if self.balancing_heuristic: | |
if self.codes is None: | |
self.codes = embed_ind.flatten() | |
else: | |
self.codes = torch.cat([self.codes, embed_ind.flatten()]) | |
if len(self.codes) > self.max_codes: | |
self.codes = self.codes[-self.max_codes :] | |
self.codes_full = True | |
if self.training: | |
embed_onehot_sum = embed_onehot.sum(0) | |
embed_sum = flatten.transpose(0, 1) @ embed_onehot | |
if distributed.is_initialized() and distributed.get_world_size() > 1: | |
distributed.all_reduce(embed_onehot_sum) | |
distributed.all_reduce(embed_sum) | |
self.cluster_size.data.mul_(self.decay).add_(embed_onehot_sum, alpha=1 - self.decay) | |
self.embed_avg.data.mul_(self.decay).add_(embed_sum, alpha=1 - self.decay) | |
n = self.cluster_size.sum() | |
cluster_size = (self.cluster_size + self.eps) / (n + self.n_embed * self.eps) * n | |
embed_normalized = self.embed_avg / cluster_size.unsqueeze(0) | |
self.embed.data.copy_(embed_normalized) | |
diff = (quantize.detach() - input).pow(2).mean() | |
quantize = input + (quantize - input).detach() | |
if return_soft_codes: | |
return quantize, diff, embed_ind, soft_codes.view(input.shape[:-1] + (-1,)) | |
elif self.new_return_order: | |
return quantize, embed_ind, diff | |
else: | |
return quantize, diff, embed_ind | |
def embed_code(self, embed_id): | |
return F.embedding(embed_id, self.embed.transpose(0, 1)) | |
# Fits a soft-discretized input to a normal-PDF across the specified dimension. | |
# In other words, attempts to force the discretization function to have a mean equal utilization across all discrete | |
# values with the specified expected variance. | |
class DiscretizationLoss(nn.Module): | |
def __init__(self, discrete_bins, dim, expected_variance, store_past=0): | |
super().__init__() | |
self.discrete_bins = discrete_bins | |
self.dim = dim | |
self.dist = torch.distributions.Normal(0, scale=expected_variance) | |
if store_past > 0: | |
self.record_past = True | |
self.register_buffer("accumulator_index", torch.zeros(1, dtype=torch.long, device="cpu")) | |
self.register_buffer("accumulator_filled", torch.zeros(1, dtype=torch.long, device="cpu")) | |
self.register_buffer("accumulator", torch.zeros(store_past, discrete_bins)) | |
else: | |
self.record_past = False | |
def forward(self, x): | |
other_dims = set(range(len(x.shape))) - set([self.dim]) | |
averaged = x.sum(dim=tuple(other_dims)) / x.sum() | |
averaged = averaged - averaged.mean() | |
if self.record_past: | |
acc_count = self.accumulator.shape[0] | |
avg = averaged.detach().clone() | |
if self.accumulator_filled > 0: | |
averaged = torch.mean(self.accumulator, dim=0) * (acc_count - 1) / acc_count + averaged / acc_count | |
# Also push averaged into the accumulator. | |
self.accumulator[self.accumulator_index] = avg | |
self.accumulator_index += 1 | |
if self.accumulator_index >= acc_count: | |
self.accumulator_index *= 0 | |
if self.accumulator_filled <= 0: | |
self.accumulator_filled += 1 | |
return torch.sum(-self.dist.log_prob(averaged)) | |
class ResBlock(nn.Module): | |
def __init__(self, chan, conv, activation): | |
super().__init__() | |
self.net = nn.Sequential( | |
conv(chan, chan, 3, padding=1), | |
activation(), | |
conv(chan, chan, 3, padding=1), | |
activation(), | |
conv(chan, chan, 1), | |
) | |
def forward(self, x): | |
return self.net(x) + x | |
class UpsampledConv(nn.Module): | |
def __init__(self, conv, *args, **kwargs): | |
super().__init__() | |
assert "stride" in kwargs.keys() | |
self.stride = kwargs["stride"] | |
del kwargs["stride"] | |
self.conv = conv(*args, **kwargs) | |
def forward(self, x): | |
up = nn.functional.interpolate(x, scale_factor=self.stride, mode="nearest") | |
return self.conv(up) | |
# DiscreteVAE partially derived from lucidrains DALLE implementation | |
# Credit: https://github.com/lucidrains/DALLE-pytorch | |
class DiscreteVAE(nn.Module): | |
def __init__( | |
self, | |
positional_dims=2, | |
num_tokens=512, | |
codebook_dim=512, | |
num_layers=3, | |
num_resnet_blocks=0, | |
hidden_dim=64, | |
channels=3, | |
stride=2, | |
kernel_size=4, | |
use_transposed_convs=True, | |
encoder_norm=False, | |
activation="relu", | |
smooth_l1_loss=False, | |
straight_through=False, | |
normalization=None, # ((0.5,) * 3, (0.5,) * 3), | |
record_codes=False, | |
discretization_loss_averaging_steps=100, | |
lr_quantizer_args={}, | |
): | |
super().__init__() | |
has_resblocks = num_resnet_blocks > 0 | |
self.num_tokens = num_tokens | |
self.num_layers = num_layers | |
self.straight_through = straight_through | |
self.positional_dims = positional_dims | |
self.discrete_loss = DiscretizationLoss( | |
num_tokens, 2, 1 / (num_tokens * 2), discretization_loss_averaging_steps | |
) | |
assert positional_dims > 0 and positional_dims < 3 # This VAE only supports 1d and 2d inputs for now. | |
if positional_dims == 2: | |
conv = nn.Conv2d | |
conv_transpose = nn.ConvTranspose2d | |
else: | |
conv = nn.Conv1d | |
conv_transpose = nn.ConvTranspose1d | |
if not use_transposed_convs: | |
conv_transpose = functools.partial(UpsampledConv, conv) | |
if activation == "relu": | |
act = nn.ReLU | |
elif activation == "silu": | |
act = nn.SiLU | |
else: | |
assert NotImplementedError() | |
enc_layers = [] | |
dec_layers = [] | |
if num_layers > 0: | |
enc_chans = [hidden_dim * 2**i for i in range(num_layers)] | |
dec_chans = list(reversed(enc_chans)) | |
enc_chans = [channels, *enc_chans] | |
dec_init_chan = codebook_dim if not has_resblocks else dec_chans[0] | |
dec_chans = [dec_init_chan, *dec_chans] | |
enc_chans_io, dec_chans_io = map(lambda t: list(zip(t[:-1], t[1:])), (enc_chans, dec_chans)) | |
pad = (kernel_size - 1) // 2 | |
for (enc_in, enc_out), (dec_in, dec_out) in zip(enc_chans_io, dec_chans_io): | |
enc_layers.append(nn.Sequential(conv(enc_in, enc_out, kernel_size, stride=stride, padding=pad), act())) | |
if encoder_norm: | |
enc_layers.append(nn.GroupNorm(8, enc_out)) | |
dec_layers.append( | |
nn.Sequential(conv_transpose(dec_in, dec_out, kernel_size, stride=stride, padding=pad), act()) | |
) | |
dec_out_chans = dec_chans[-1] | |
innermost_dim = dec_chans[0] | |
else: | |
enc_layers.append(nn.Sequential(conv(channels, hidden_dim, 1), act())) | |
dec_out_chans = hidden_dim | |
innermost_dim = hidden_dim | |
for _ in range(num_resnet_blocks): | |
dec_layers.insert(0, ResBlock(innermost_dim, conv, act)) | |
enc_layers.append(ResBlock(innermost_dim, conv, act)) | |
if num_resnet_blocks > 0: | |
dec_layers.insert(0, conv(codebook_dim, innermost_dim, 1)) | |
enc_layers.append(conv(innermost_dim, codebook_dim, 1)) | |
dec_layers.append(conv(dec_out_chans, channels, 1)) | |
self.encoder = nn.Sequential(*enc_layers) | |
self.decoder = nn.Sequential(*dec_layers) | |
self.loss_fn = F.smooth_l1_loss if smooth_l1_loss else F.mse_loss | |
self.codebook = Quantize(codebook_dim, num_tokens, new_return_order=True) | |
# take care of normalization within class | |
self.normalization = normalization | |
self.record_codes = record_codes | |
if record_codes: | |
self.codes = torch.zeros((1228800,), dtype=torch.long) | |
self.code_ind = 0 | |
self.total_codes = 0 | |
self.internal_step = 0 | |
def norm(self, images): | |
if not self.normalization is not None: | |
return images | |
means, stds = map(lambda t: torch.as_tensor(t).to(images), self.normalization) | |
arrange = "c -> () c () ()" if self.positional_dims == 2 else "c -> () c ()" | |
means, stds = map(lambda t: rearrange(t, arrange), (means, stds)) | |
images = images.clone() | |
images.sub_(means).div_(stds) | |
return images | |
def get_debug_values(self, step, __): | |
if self.record_codes and self.total_codes > 0: | |
# Report annealing schedule | |
return {"histogram_codes": self.codes[: self.total_codes]} | |
else: | |
return {} | |
def get_codebook_indices(self, images): | |
img = self.norm(images) | |
logits = self.encoder(img).permute((0, 2, 3, 1) if len(img.shape) == 4 else (0, 2, 1)) | |
sampled, codes, _ = self.codebook(logits) | |
self.log_codes(codes) | |
return codes | |
def decode(self, img_seq): | |
self.log_codes(img_seq) | |
if hasattr(self.codebook, "embed_code"): | |
image_embeds = self.codebook.embed_code(img_seq) | |
else: | |
image_embeds = F.embedding(img_seq, self.codebook.codebook) | |
b, n, d = image_embeds.shape | |
kwargs = {} | |
if self.positional_dims == 1: | |
arrange = "b n d -> b d n" | |
else: | |
h = w = int(sqrt(n)) | |
arrange = "b (h w) d -> b d h w" | |
kwargs = {"h": h, "w": w} | |
image_embeds = rearrange(image_embeds, arrange, **kwargs) | |
images = [image_embeds] | |
for layer in self.decoder: | |
images.append(layer(images[-1])) | |
return images[-1], images[-2] | |
def infer(self, img): | |
img = self.norm(img) | |
logits = self.encoder(img).permute((0, 2, 3, 1) if len(img.shape) == 4 else (0, 2, 1)) | |
sampled, codes, commitment_loss = self.codebook(logits) | |
return self.decode(codes) | |
# Note: This module is not meant to be run in forward() except while training. It has special logic which performs | |
# evaluation using quantized values when it detects that it is being run in eval() mode, which will be substantially | |
# more lossy (but useful for determining network performance). | |
def forward(self, img): | |
img = self.norm(img) | |
logits = self.encoder(img).permute((0, 2, 3, 1) if len(img.shape) == 4 else (0, 2, 1)) | |
sampled, codes, commitment_loss = self.codebook(logits) | |
sampled = sampled.permute((0, 3, 1, 2) if len(img.shape) == 4 else (0, 2, 1)) | |
if self.training: | |
out = sampled | |
for d in self.decoder: | |
out = d(out) | |
self.log_codes(codes) | |
else: | |
# This is non-differentiable, but gives a better idea of how the network is actually performing. | |
out, _ = self.decode(codes) | |
# reconstruction loss | |
recon_loss = self.loss_fn(img, out, reduction="none") | |
return recon_loss, commitment_loss, out | |
def log_codes(self, codes): | |
# This is so we can debug the distribution of codes being learned. | |
if self.record_codes and self.internal_step % 10 == 0: | |
codes = codes.flatten() | |
l = codes.shape[0] | |
i = self.code_ind if (self.codes.shape[0] - self.code_ind) > l else self.codes.shape[0] - l | |
self.codes[i : i + l] = codes.cpu() | |
self.code_ind = self.code_ind + l | |
if self.code_ind >= self.codes.shape[0]: | |
self.code_ind = 0 | |
self.total_codes += 1 | |
self.internal_step += 1 | |