clonar-voz / TTS /tts /layers /xtts /gpt_inference.py
Shadhil's picture
voice-clone with single audio sample input
9b2107c
raw
history blame
5.44 kB
import math
import torch
from torch import nn
from transformers import GPT2PreTrainedModel
from transformers.modeling_outputs import CausalLMOutputWithCrossAttentions
class GPT2InferenceModel(GPT2PreTrainedModel):
"""Override GPT2LMHeadModel to allow for prefix conditioning."""
def __init__(self, config, gpt, pos_emb, embeddings, norm, linear, kv_cache):
super().__init__(config)
self.transformer = gpt
self.pos_embedding = pos_emb
self.embeddings = embeddings
self.final_norm = norm
self.lm_head = nn.Sequential(norm, linear)
self.kv_cache = kv_cache
def store_prefix_emb(self, prefix_emb):
self.cached_prefix_emb = prefix_emb
def prepare_inputs_for_generation(self, input_ids, past_key_values=None, **kwargs):
token_type_ids = kwargs.get("token_type_ids", None) # usually None
if not self.kv_cache:
past_key_values = None
# only last token for inputs_ids if past is defined in kwargs
if past_key_values is not None:
input_ids = input_ids[:, -1].unsqueeze(-1)
if token_type_ids is not None:
token_type_ids = token_type_ids[:, -1].unsqueeze(-1)
attention_mask = kwargs.get("attention_mask", None)
position_ids = kwargs.get("position_ids", None)
if attention_mask is not None and position_ids is None:
# create position_ids on the fly for batch generation
position_ids = attention_mask.long().cumsum(-1) - 1
position_ids.masked_fill_(attention_mask == 0, 1)
if past_key_values is not None:
position_ids = position_ids[:, -1].unsqueeze(-1)
else:
position_ids = None
return {
"input_ids": input_ids,
"past_key_values": past_key_values,
"use_cache": kwargs.get("use_cache"),
"position_ids": position_ids,
"attention_mask": attention_mask,
"token_type_ids": token_type_ids,
}
def forward(
self,
input_ids=None,
past_key_values=None,
attention_mask=None,
token_type_ids=None,
position_ids=None,
head_mask=None,
inputs_embeds=None,
encoder_hidden_states=None,
encoder_attention_mask=None,
labels=None,
use_cache=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
):
assert self.cached_prefix_emb is not None
assert inputs_embeds is None # Not supported by this inference model.
assert labels is None # Training not supported by this inference model.
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# assert len(past_key_values) + len(input_ids) == attention_mask.shape[1]
# Create embedding
prefix_len = self.cached_prefix_emb.shape[1]
if input_ids.shape[1] != 1:
gen_inputs = input_ids[:, prefix_len:]
gen_emb = self.embeddings(gen_inputs)
gen_emb = gen_emb + self.pos_embedding(gen_emb)
if self.cached_prefix_emb.shape[0] != gen_emb.shape[0]:
prefix_emb = self.cached_prefix_emb.repeat_interleave(
gen_emb.shape[0] // self.cached_prefix_emb.shape[0], 0
)
else:
prefix_emb = self.cached_prefix_emb.to(gen_emb.dtype)
emb = torch.cat([prefix_emb, gen_emb], dim=1)
else:
emb = self.embeddings(input_ids)
emb = emb + self.pos_embedding.get_fixed_embedding(
attention_mask.shape[1] - (prefix_len + 1), attention_mask.device
)
transformer_outputs = self.transformer(
inputs_embeds=emb,
past_key_values=past_key_values,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
hidden_states = transformer_outputs[0]
lm_logits = self.lm_head(hidden_states)
if not return_dict:
return (lm_logits,) + transformer_outputs[1:]
return CausalLMOutputWithCrossAttentions(
loss=None,
logits=lm_logits,
past_key_values=transformer_outputs.past_key_values,
hidden_states=transformer_outputs.hidden_states,
attentions=transformer_outputs.attentions,
cross_attentions=transformer_outputs.cross_attentions,
)
@staticmethod
def _reorder_cache(past, beam_idx):
"""
This function is used to re-order the :obj:`past_key_values` cache if
:meth:`~transformers.PreTrainedModel.beam_search` or :meth:`~transformers.PreTrainedModel.beam_sample` is
called. This is required to match :obj:`past_key_values` with the correct beam_idx at every generation step.
"""
return tuple(
tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past)
for layer_past in past
)