Spaces:
Running
Running
import os | |
import random | |
from contextlib import contextmanager | |
from dataclasses import dataclass | |
from time import time | |
import torch | |
import torch.nn.functional as F | |
import torchaudio | |
from coqpit import Coqpit | |
from tqdm import tqdm | |
from TTS.tts.layers.tortoise.arch_utils import TorchMelSpectrogram | |
from TTS.tts.layers.tortoise.audio_utils import denormalize_tacotron_mel, load_voice, wav_to_univnet_mel | |
from TTS.tts.layers.tortoise.autoregressive import UnifiedVoice | |
from TTS.tts.layers.tortoise.classifier import AudioMiniEncoderWithClassifierHead | |
from TTS.tts.layers.tortoise.clvp import CLVP | |
from TTS.tts.layers.tortoise.diffusion import SpacedDiffusion, get_named_beta_schedule, space_timesteps | |
from TTS.tts.layers.tortoise.diffusion_decoder import DiffusionTts | |
from TTS.tts.layers.tortoise.random_latent_generator import RandomLatentConverter | |
from TTS.tts.layers.tortoise.tokenizer import VoiceBpeTokenizer | |
from TTS.tts.layers.tortoise.vocoder import VocConf, VocType | |
from TTS.tts.layers.tortoise.wav2vec_alignment import Wav2VecAlignment | |
from TTS.tts.models.base_tts import BaseTTS | |
def pad_or_truncate(t, length): | |
""" | |
Utility function for forcing <t> to have the specified sequence length, whether by clipping it or padding it with 0s. | |
""" | |
tp = t[..., :length] | |
if t.shape[-1] == length: | |
tp = t | |
elif t.shape[-1] < length: | |
tp = F.pad(t, (0, length - t.shape[-1])) | |
return tp | |
def deterministic_state(seed=None): | |
""" | |
Sets the random seeds that tortoise uses to the current time() and returns that seed so results can be | |
reproduced. | |
""" | |
seed = int(time()) if seed is None else seed | |
torch.manual_seed(seed) | |
random.seed(seed) | |
# Can't currently set this because of CUBLAS. TODO: potentially enable it if necessary. | |
# torch.use_deterministic_algorithms(True) | |
return seed | |
def load_discrete_vocoder_diffuser( | |
trained_diffusion_steps=4000, | |
desired_diffusion_steps=200, | |
cond_free=True, | |
cond_free_k=1, | |
sampler="ddim", | |
): | |
""" | |
Helper function to load a GaussianDiffusion instance configured for use as a vocoder. | |
""" | |
return SpacedDiffusion( | |
use_timesteps=space_timesteps(trained_diffusion_steps, [desired_diffusion_steps]), | |
model_mean_type="epsilon", | |
model_var_type="learned_range", | |
loss_type="mse", | |
betas=get_named_beta_schedule("linear", trained_diffusion_steps), | |
conditioning_free=cond_free, | |
conditioning_free_k=cond_free_k, | |
sampler=sampler, | |
) | |
def format_conditioning(clip, cond_length=132300, device="cuda", **kwargs): | |
""" | |
Converts the given conditioning signal to a MEL spectrogram and clips it as expected by the models. | |
""" | |
gap = clip.shape[-1] - cond_length | |
if gap < 0: | |
clip = F.pad(clip, pad=(0, abs(gap))) | |
elif gap > 0: | |
rand_start = random.randint(0, gap) | |
clip = clip[:, rand_start : rand_start + cond_length] | |
mel_clip = TorchMelSpectrogram(**kwargs)(clip.unsqueeze(0)).squeeze(0) | |
return mel_clip.unsqueeze(0).to(device) | |
def fix_autoregressive_output(codes, stop_token, complain=True): | |
""" | |
This function performs some padding on coded audio that fixes a mismatch issue between what the diffusion model was | |
trained on and what the autoregressive code generator creates (which has no padding or end). | |
This is highly specific to the DVAE being used, so this particular coding will not necessarily work if used with | |
a different DVAE. This can be inferred by feeding a audio clip padded with lots of zeros on the end through the DVAE | |
and copying out the last few codes. | |
Failing to do this padding will produce speech with a harsh end that sounds like "BLAH" or similar. | |
""" | |
# Strip off the autoregressive stop token and add padding. | |
stop_token_indices = (codes == stop_token).nonzero() | |
if len(stop_token_indices) == 0: | |
if complain: | |
print( | |
"No stop tokens found in one of the generated voice clips. This typically means the spoken audio is " | |
"too long. In some cases, the output will still be good, though. Listen to it and if it is missing words, " | |
"try breaking up your input text." | |
) | |
return codes | |
codes[stop_token_indices] = 83 | |
stm = stop_token_indices.min().item() | |
codes[stm:] = 83 | |
if stm - 3 < codes.shape[0]: | |
codes[-3] = 45 | |
codes[-2] = 45 | |
codes[-1] = 248 | |
return codes | |
def do_spectrogram_diffusion( | |
diffusion_model, | |
diffuser, | |
latents, | |
conditioning_latents, | |
temperature=1, | |
verbose=True, | |
): | |
""" | |
Uses the specified diffusion model to convert discrete codes into a spectrogram. | |
""" | |
with torch.no_grad(): | |
output_seq_len = ( | |
latents.shape[1] * 4 * 24000 // 22050 | |
) # This diffusion model converts from 22kHz spectrogram codes to a 24kHz spectrogram signal. | |
output_shape = (latents.shape[0], 100, output_seq_len) | |
precomputed_embeddings = diffusion_model.timestep_independent( | |
latents, conditioning_latents, output_seq_len, False | |
) | |
noise = torch.randn(output_shape, device=latents.device) * temperature | |
mel = diffuser.sample_loop( | |
diffusion_model, | |
output_shape, | |
noise=noise, | |
model_kwargs={"precomputed_aligned_embeddings": precomputed_embeddings}, | |
progress=verbose, | |
) | |
return denormalize_tacotron_mel(mel)[:, :, :output_seq_len] | |
def classify_audio_clip(clip, model_dir): | |
""" | |
Returns whether or not Tortoises' classifier thinks the given clip came from Tortoise. | |
:param clip: torch tensor containing audio waveform data (get it from load_audio) | |
:return: True if the clip was classified as coming from Tortoise and false if it was classified as real. | |
""" | |
classifier = AudioMiniEncoderWithClassifierHead( | |
2, | |
spec_dim=1, | |
embedding_dim=512, | |
depth=5, | |
downsample_factor=4, | |
resnet_blocks=2, | |
attn_blocks=4, | |
num_attn_heads=4, | |
base_channels=32, | |
dropout=0, | |
kernel_size=5, | |
distribute_zero_label=False, | |
) | |
classifier.load_state_dict(torch.load(os.path.join(model_dir, "classifier.pth"), map_location=torch.device("cpu"))) | |
clip = clip.cpu().unsqueeze(0) | |
results = F.softmax(classifier(clip), dim=-1) | |
return results[0][0] | |
def pick_best_batch_size_for_gpu(): | |
""" | |
Tries to pick a batch size that will fit in your GPU. These sizes aren't guaranteed to work, but they should give | |
you a good shot. | |
""" | |
if torch.cuda.is_available(): | |
_, available = torch.cuda.mem_get_info() | |
availableGb = available / (1024**3) | |
batch_size = 1 | |
if availableGb > 14: | |
batch_size = 16 | |
elif availableGb > 10: | |
batch_size = 8 | |
elif availableGb > 7: | |
batch_size = 4 | |
return batch_size | |
class TortoiseAudioConfig(Coqpit): | |
sample_rate: int = 22050 | |
diffusion_sample_rate: int = 24000 | |
output_sample_rate: int = 24000 | |
class TortoiseArgs(Coqpit): | |
"""A dataclass to represent Tortoise model arguments that define the model structure. | |
Args: | |
autoregressive_batch_size (int): The size of the auto-regressive batch. | |
enable_redaction (bool, optional): Whether to enable redaction. Defaults to True. | |
high_vram (bool, optional): Whether to use high VRAM. Defaults to False. | |
kv_cache (bool, optional): Whether to use the kv_cache. Defaults to True. | |
ar_checkpoint (str, optional): The checkpoint for the autoregressive model. Defaults to None. | |
clvp_checkpoint (str, optional): The checkpoint for the ConditionalLatentVariablePerseq model. Defaults to None. | |
diff_checkpoint (str, optional): The checkpoint for the DiffTTS model. Defaults to None. | |
num_chars (int, optional): The maximum number of characters to generate. Defaults to 255. | |
vocoder (VocType, optional): The vocoder to use for synthesis. Defaults to VocConf.Univnet. | |
For UnifiedVoice model: | |
ar_max_mel_tokens (int, optional): The maximum mel tokens for the autoregressive model. Defaults to 604. | |
ar_max_text_tokens (int, optional): The maximum text tokens for the autoregressive model. Defaults to 402. | |
ar_max_conditioning_inputs (int, optional): The maximum conditioning inputs for the autoregressive model. Defaults to 2. | |
ar_layers (int, optional): The number of layers for the autoregressive model. Defaults to 30. | |
ar_model_dim (int, optional): The model dimension for the autoregressive model. Defaults to 1024. | |
ar_heads (int, optional): The number of heads for the autoregressive model. Defaults to 16. | |
ar_number_text_tokens (int, optional): The number of text tokens for the autoregressive model. Defaults to 255. | |
ar_start_text_token (int, optional): The start text token for the autoregressive model. Defaults to 255. | |
ar_checkpointing (bool, optional): Whether to use checkpointing for the autoregressive model. Defaults to False. | |
ar_train_solo_embeddings (bool, optional): Whether to train embeddings for the autoregressive model. Defaults to False. | |
For DiffTTS model: | |
diff_model_channels (int, optional): The number of channels for the DiffTTS model. Defaults to 1024. | |
diff_num_layers (int, optional): The number of layers for the DiffTTS model. Defaults to 10. | |
diff_in_channels (int, optional): The input channels for the DiffTTS model. Defaults to 100. | |
diff_out_channels (int, optional): The output channels for the DiffTTS model. Defaults to 200. | |
diff_in_latent_channels (int, optional): The input latent channels for the DiffTTS model. Defaults to 1024. | |
diff_in_tokens (int, optional): The input tokens for the DiffTTS model. Defaults to 8193. | |
diff_dropout (int, optional): The dropout percentage for the DiffTTS model. Defaults to 0. | |
diff_use_fp16 (bool, optional): Whether to use fp16 for the DiffTTS model. Defaults to False. | |
diff_num_heads (int, optional): The number of heads for the DiffTTS model. Defaults to 16. | |
diff_layer_drop (int, optional): The layer dropout percentage for the DiffTTS model. Defaults to 0. | |
diff_unconditioned_percentage (int, optional): The percentage of unconditioned inputs for the DiffTTS model. Defaults to 0. | |
For ConditionalLatentVariablePerseq model: | |
clvp_dim_text (int): The dimension of the text input for the CLVP module. Defaults to 768. | |
clvp_dim_speech (int): The dimension of the speech input for the CLVP module. Defaults to 768. | |
clvp_dim_latent (int): The dimension of the latent representation for the CLVP module. Defaults to 768. | |
clvp_num_text_tokens (int): The number of text tokens used by the CLVP module. Defaults to 256. | |
clvp_text_enc_depth (int): The depth of the text encoder in the CLVP module. Defaults to 20. | |
clvp_text_seq_len (int): The maximum sequence length of the text input for the CLVP module. Defaults to 350. | |
clvp_text_heads (int): The number of attention heads used by the text encoder in the CLVP module. Defaults to 12. | |
clvp_num_speech_tokens (int): The number of speech tokens used by the CLVP module. Defaults to 8192. | |
clvp_speech_enc_depth (int): The depth of the speech encoder in the CLVP module. Defaults to 20. | |
clvp_speech_heads (int): The number of attention heads used by the speech encoder in the CLVP module. Defaults to 12. | |
clvp_speech_seq_len (int): The maximum sequence length of the speech input for the CLVP module. Defaults to 430. | |
clvp_use_xformers (bool): A flag indicating whether the model uses transformers in the CLVP module. Defaults to True. | |
duration_const (int): A constant value used in the model. Defaults to 102400. | |
""" | |
autoregressive_batch_size: int = 1 | |
enable_redaction: bool = False | |
high_vram: bool = False | |
kv_cache: bool = True | |
ar_checkpoint: str = None | |
clvp_checkpoint: str = None | |
diff_checkpoint: str = None | |
num_chars: int = 255 | |
vocoder: VocType = VocConf.Univnet | |
# UnifiedVoice params | |
ar_max_mel_tokens: int = 604 | |
ar_max_text_tokens: int = 402 | |
ar_max_conditioning_inputs: int = 2 | |
ar_layers: int = 30 | |
ar_model_dim: int = 1024 | |
ar_heads: int = 16 | |
ar_number_text_tokens: int = 255 | |
ar_start_text_token: int = 255 | |
ar_checkpointing: bool = False | |
ar_train_solo_embeddings: bool = False | |
# DiffTTS params | |
diff_model_channels: int = 1024 | |
diff_num_layers: int = 10 | |
diff_in_channels: int = 100 | |
diff_out_channels: int = 200 | |
diff_in_latent_channels: int = 1024 | |
diff_in_tokens: int = 8193 | |
diff_dropout: int = 0 | |
diff_use_fp16: bool = False | |
diff_num_heads: int = 16 | |
diff_layer_drop: int = 0 | |
diff_unconditioned_percentage: int = 0 | |
# clvp params | |
clvp_dim_text: int = 768 | |
clvp_dim_speech: int = 768 | |
clvp_dim_latent: int = 768 | |
clvp_num_text_tokens: int = 256 | |
clvp_text_enc_depth: int = 20 | |
clvp_text_seq_len: int = 350 | |
clvp_text_heads: int = 12 | |
clvp_num_speech_tokens: int = 8192 | |
clvp_speech_enc_depth: int = 20 | |
clvp_speech_heads: int = 12 | |
clvp_speech_seq_len: int = 430 | |
clvp_use_xformers: bool = True | |
# constants | |
duration_const: int = 102400 | |
class Tortoise(BaseTTS): | |
"""Tortoise model class. | |
Currently only supports inference. | |
Examples: | |
>>> from TTS.tts.configs.tortoise_config import TortoiseConfig | |
>>> from TTS.tts.models.tortoise import Tortoise | |
>>> config = TortoiseConfig() | |
>>> model = Tortoise.inif_from_config(config) | |
>>> model.load_checkpoint(config, checkpoint_dir="paths/to/models_dir/", eval=True) | |
""" | |
def __init__(self, config: Coqpit): | |
super().__init__(config, ap=None, tokenizer=None) | |
self.mel_norm_path = None | |
self.config = config | |
self.ar_checkpoint = self.args.ar_checkpoint | |
self.diff_checkpoint = self.args.diff_checkpoint # TODO: check if this is even needed | |
self.models_dir = config.model_dir | |
self.autoregressive_batch_size = ( | |
pick_best_batch_size_for_gpu() | |
if self.args.autoregressive_batch_size is None | |
else self.args.autoregressive_batch_size | |
) | |
self.enable_redaction = self.args.enable_redaction | |
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
if self.enable_redaction: | |
self.aligner = Wav2VecAlignment() | |
self.tokenizer = VoiceBpeTokenizer() | |
self.autoregressive = UnifiedVoice( | |
max_mel_tokens=self.args.ar_max_mel_tokens, | |
max_text_tokens=self.args.ar_max_text_tokens, | |
max_conditioning_inputs=self.args.ar_max_conditioning_inputs, | |
layers=self.args.ar_layers, | |
model_dim=self.args.ar_model_dim, | |
heads=self.args.ar_heads, | |
number_text_tokens=self.args.ar_number_text_tokens, | |
start_text_token=self.args.ar_start_text_token, | |
checkpointing=self.args.ar_checkpointing, | |
train_solo_embeddings=self.args.ar_train_solo_embeddings, | |
).cpu() | |
self.diffusion = DiffusionTts( | |
model_channels=self.args.diff_model_channels, | |
num_layers=self.args.diff_num_layers, | |
in_channels=self.args.diff_in_channels, | |
out_channels=self.args.diff_out_channels, | |
in_latent_channels=self.args.diff_in_latent_channels, | |
in_tokens=self.args.diff_in_tokens, | |
dropout=self.args.diff_dropout, | |
use_fp16=self.args.diff_use_fp16, | |
num_heads=self.args.diff_num_heads, | |
layer_drop=self.args.diff_layer_drop, | |
unconditioned_percentage=self.args.diff_unconditioned_percentage, | |
).cpu() | |
self.clvp = CLVP( | |
dim_text=self.args.clvp_dim_text, | |
dim_speech=self.args.clvp_dim_speech, | |
dim_latent=self.args.clvp_dim_latent, | |
num_text_tokens=self.args.clvp_num_text_tokens, | |
text_enc_depth=self.args.clvp_text_enc_depth, | |
text_seq_len=self.args.clvp_text_seq_len, | |
text_heads=self.args.clvp_text_heads, | |
num_speech_tokens=self.args.clvp_num_speech_tokens, | |
speech_enc_depth=self.args.clvp_speech_enc_depth, | |
speech_heads=self.args.clvp_speech_heads, | |
speech_seq_len=self.args.clvp_speech_seq_len, | |
use_xformers=self.args.clvp_use_xformers, | |
).cpu() | |
self.vocoder = self.args.vocoder.value.constructor().cpu() | |
# Random latent generators (RLGs) are loaded lazily. | |
self.rlg_auto = None | |
self.rlg_diffusion = None | |
if self.args.high_vram: | |
self.autoregressive = self.autoregressive.to(self.device) | |
self.diffusion = self.diffusion.to(self.device) | |
self.clvp = self.clvp.to(self.device) | |
self.vocoder = self.vocoder.to(self.device) | |
self.high_vram = self.args.high_vram | |
def temporary_cuda(self, model): | |
if self.high_vram: | |
yield model | |
else: | |
m = model.to(self.device) | |
yield m | |
m = model.cpu() | |
def get_conditioning_latents( | |
self, | |
voice_samples, | |
return_mels=False, | |
latent_averaging_mode=0, | |
original_tortoise=False, | |
): | |
""" | |
Transforms one or more voice_samples into a tuple (autoregressive_conditioning_latent, diffusion_conditioning_latent). | |
These are expressive learned latents that encode aspects of the provided clips like voice, intonation, and acoustic | |
properties. | |
:param voice_samples: List of arbitrary reference clips, which should be *pairs* of torch tensors containing arbitrary kHz waveform data. | |
:param latent_averaging_mode: 0/1/2 for following modes: | |
0 - latents will be generated as in original tortoise, using ~4.27s from each voice sample, averaging latent across all samples | |
1 - latents will be generated using (almost) entire voice samples, averaged across all the ~4.27s chunks | |
2 - latents will be generated using (almost) entire voice samples, averaged per voice sample | |
""" | |
assert latent_averaging_mode in [ | |
0, | |
1, | |
2, | |
], "latent_averaging mode has to be one of (0, 1, 2)" | |
with torch.no_grad(): | |
voice_samples = [[v.to(self.device) for v in ls] for ls in voice_samples] | |
auto_conds = [] | |
for ls in voice_samples: | |
auto_conds.append(format_conditioning(ls[0], device=self.device, mel_norm_file=self.mel_norm_path)) | |
auto_conds = torch.stack(auto_conds, dim=1) | |
with self.temporary_cuda(self.autoregressive) as ar: | |
auto_latent = ar.get_conditioning(auto_conds) | |
diffusion_conds = [] | |
DURS_CONST = self.args.duration_const | |
for ls in voice_samples: | |
# The diffuser operates at a sample rate of 24000 (except for the latent inputs) | |
sample = torchaudio.functional.resample(ls[0], 22050, 24000) if original_tortoise else ls[1] | |
if latent_averaging_mode == 0: | |
sample = pad_or_truncate(sample, DURS_CONST) | |
cond_mel = wav_to_univnet_mel( | |
sample.to(self.device), | |
do_normalization=False, | |
device=self.device, | |
) | |
diffusion_conds.append(cond_mel) | |
else: | |
from math import ceil | |
if latent_averaging_mode == 2: | |
temp_diffusion_conds = [] | |
for chunk in range(ceil(sample.shape[1] / DURS_CONST)): | |
current_sample = sample[:, chunk * DURS_CONST : (chunk + 1) * DURS_CONST] | |
current_sample = pad_or_truncate(current_sample, DURS_CONST) | |
cond_mel = wav_to_univnet_mel( | |
current_sample.to(self.device), | |
do_normalization=False, | |
device=self.device, | |
) | |
if latent_averaging_mode == 1: | |
diffusion_conds.append(cond_mel) | |
elif latent_averaging_mode == 2: | |
temp_diffusion_conds.append(cond_mel) | |
if latent_averaging_mode == 2: | |
diffusion_conds.append(torch.stack(temp_diffusion_conds).mean(0)) | |
diffusion_conds = torch.stack(diffusion_conds, dim=1) | |
with self.temporary_cuda(self.diffusion) as diffusion: | |
diffusion_latent = diffusion.get_conditioning(diffusion_conds) | |
if return_mels: | |
return auto_latent, diffusion_latent, auto_conds, diffusion_conds | |
return auto_latent, diffusion_latent | |
def get_random_conditioning_latents(self): | |
# Lazy-load the RLG models. | |
if self.rlg_auto is None: | |
self.rlg_auto = RandomLatentConverter(1024).eval() | |
self.rlg_auto.load_state_dict( | |
torch.load( | |
os.path.join(self.models_dir, "rlg_auto.pth"), | |
map_location=torch.device("cpu"), | |
) | |
) | |
self.rlg_diffusion = RandomLatentConverter(2048).eval() | |
self.rlg_diffusion.load_state_dict( | |
torch.load( | |
os.path.join(self.models_dir, "rlg_diffuser.pth"), | |
map_location=torch.device("cpu"), | |
) | |
) | |
with torch.no_grad(): | |
return self.rlg_auto(torch.tensor([0.0])), self.rlg_diffusion(torch.tensor([0.0])) | |
def synthesize(self, text, config, speaker_id="random", voice_dirs=None, **kwargs): | |
"""Synthesize speech with the given input text. | |
Args: | |
text (str): Input text. | |
config (TortoiseConfig): Config with inference parameters. | |
speaker_id (str): One of the available speaker names. If `random`, it generates a random speaker. | |
voice_dirs (List[str]): List of paths that host reference audio files for speakers. Defaults to None. | |
**kwargs: Inference settings. See `inference()`. | |
Returns: | |
A dictionary of the output values with `wav` as output waveform, `deterministic_seed` as seed used at inference, | |
`text_input` as text token IDs after tokenizer, `voice_samples` as samples used for cloning, `conditioning_latents` | |
as latents used at inference. | |
""" | |
speaker_id = "random" if speaker_id is None else speaker_id | |
if voice_dirs is not None: | |
voice_dirs = [voice_dirs] | |
voice_samples, conditioning_latents = load_voice(speaker_id, voice_dirs) | |
else: | |
voice_samples, conditioning_latents = load_voice(speaker_id) | |
outputs = self.inference_with_config( | |
text, config, voice_samples=voice_samples, conditioning_latents=conditioning_latents, **kwargs | |
) | |
return_dict = { | |
"wav": outputs["wav"], | |
"deterministic_seed": outputs["deterministic_seed"], | |
"text_inputs": outputs["text"], | |
"voice_samples": outputs["voice_samples"], | |
"conditioning_latents": outputs["conditioning_latents"], | |
} | |
return return_dict | |
def inference_with_config(self, text, config, **kwargs): | |
""" | |
inference with config | |
#TODO describe in detail | |
""" | |
# Use generally found best tuning knobs for generation. | |
settings = { | |
"temperature": config.temperature, | |
"length_penalty": config.length_penalty, | |
"repetition_penalty": config.repetition_penalty, | |
"top_p": config.top_p, | |
"cond_free_k": config.cond_free_k, | |
"diffusion_temperature": config.diffusion_temperature, | |
"sampler": config.sampler, | |
} | |
# Presets are defined here. | |
presets = { | |
"single_sample": { | |
"num_autoregressive_samples": 8, | |
"diffusion_iterations": 10, | |
"sampler": "ddim", | |
}, | |
"ultra_fast": { | |
"num_autoregressive_samples": 16, | |
"diffusion_iterations": 10, | |
"sampler": "ddim", | |
}, | |
"ultra_fast_old": { | |
"num_autoregressive_samples": 16, | |
"diffusion_iterations": 30, | |
"cond_free": False, | |
}, | |
"very_fast": { | |
"num_autoregressive_samples": 32, | |
"diffusion_iterations": 30, | |
"sampler": "dpm++2m", | |
}, | |
"fast": { | |
"num_autoregressive_samples": 5, | |
"diffusion_iterations": 50, | |
"sampler": "ddim", | |
}, | |
"fast_old": {"num_autoregressive_samples": 96, "diffusion_iterations": 80}, | |
"standard": { | |
"num_autoregressive_samples": 5, | |
"diffusion_iterations": 200, | |
}, | |
"high_quality": { | |
"num_autoregressive_samples": 256, | |
"diffusion_iterations": 400, | |
}, | |
} | |
if "preset" in kwargs: | |
settings.update(presets[kwargs["preset"]]) | |
kwargs.pop("preset") | |
settings.update(kwargs) # allow overriding of preset settings with kwargs | |
return self.inference(text, **settings) | |
def inference( | |
self, | |
text, | |
voice_samples=None, | |
conditioning_latents=None, | |
k=1, | |
verbose=True, | |
use_deterministic_seed=None, | |
return_deterministic_state=False, | |
latent_averaging_mode=0, | |
# autoregressive generation parameters follow | |
num_autoregressive_samples=16, | |
temperature=0.8, | |
length_penalty=1, | |
repetition_penalty=2.0, | |
top_p=0.8, | |
max_mel_tokens=500, | |
# diffusion generation parameters follow | |
diffusion_iterations=100, | |
cond_free=True, | |
cond_free_k=2, | |
diffusion_temperature=1.0, | |
sampler="ddim", | |
half=True, | |
original_tortoise=False, | |
**hf_generate_kwargs, | |
): | |
""" | |
This function produces an audio clip of the given text being spoken with the given reference voice. | |
Args: | |
text: (str) Text to be spoken. | |
voice_samples: (List[Tuple[torch.Tensor]]) List of an arbitrary number of reference clips, which should be tuple-pairs | |
of torch tensors containing arbitrary kHz waveform data. | |
conditioning_latents: (Tuple[autoregressive_conditioning_latent, diffusion_conditioning_latent]) A tuple of | |
(autoregressive_conditioning_latent, diffusion_conditioning_latent), which can be provided in lieu | |
of voice_samples. This is ignored unless `voice_samples=None`. Conditioning latents can be retrieved | |
via `get_conditioning_latents()`. | |
k: (int) The number of returned clips. The most likely (as determined by Tortoises' CLVP model) clips are returned. | |
latent_averaging_mode: (int) 0/1/2 for following modes: | |
0 - latents will be generated as in original tortoise, using ~4.27s from each voice sample, averaging latent across all samples | |
1 - latents will be generated using (almost) entire voice samples, averaged across all the ~4.27s chunks | |
2 - latents will be generated using (almost) entire voice samples, averaged per voice sample | |
verbose: (bool) Whether or not to print log messages indicating the progress of creating a clip. Default=true. | |
num_autoregressive_samples: (int) Number of samples taken from the autoregressive model, all of which are filtered using CLVP. | |
As Tortoise is a probabilistic model, more samples means a higher probability of creating something "great". | |
temperature: (float) The softmax temperature of the autoregressive model. | |
length_penalty: (float) A length penalty applied to the autoregressive decoder. Higher settings causes the model to produce more terse outputs. | |
repetition_penalty: (float) A penalty that prevents the autoregressive decoder from repeating itself during decoding. Can be used to reduce | |
the incidence of long silences or "uhhhhhhs", etc. | |
top_p: (float) P value used in nucleus sampling. (0,1]. Lower values mean the decoder produces more "likely" (aka boring) outputs. | |
max_mel_tokens: (int) Restricts the output length. (0,600] integer. Each unit is 1/20 of a second. | |
typical_sampling: (bool) Turns typical sampling on or off. This sampling mode is discussed in this paper: https://arxiv.org/abs/2202.00666 | |
I was interested in the premise, but the results were not as good as I was hoping. This is off by default, but could use some tuning. | |
typical_mass: (float) The typical_mass parameter from the typical_sampling algorithm. | |
diffusion_iterations: (int) Number of diffusion steps to perform. [0,4000]. More steps means the network has more chances to iteratively | |
refine the output, which should theoretically mean a higher quality output. Generally a value above 250 is not noticeably better, however. | |
cond_free: (bool) Whether or not to perform conditioning-free diffusion. Conditioning-free diffusion performs two forward passes for | |
each diffusion step: one with the outputs of the autoregressive model and one with no conditioning priors. The output of the two | |
is blended according to the cond_free_k value below. Conditioning-free diffusion is the real deal, and dramatically improves realism. | |
cond_free_k: (float) Knob that determines how to balance the conditioning free signal with the conditioning-present signal. [0,inf]. | |
As cond_free_k increases, the output becomes dominated by the conditioning-free signal. | |
diffusion_temperature: (float) Controls the variance of the noise fed into the diffusion model. [0,1]. Values at 0 | |
are the "mean" prediction of the diffusion network and will sound bland and smeared. | |
hf_generate_kwargs: (**kwargs) The huggingface Transformers generate API is used for the autoregressive transformer. | |
Extra keyword args fed to this function get forwarded directly to that API. Documentation | |
here: https://huggingface.co/docs/transformers/internal/generation_utils | |
Returns: | |
Generated audio clip(s) as a torch tensor. Shape 1,S if k=1 else, (k,1,S) where S is the sample length. | |
Sample rate is 24kHz. | |
""" | |
deterministic_seed = deterministic_state(seed=use_deterministic_seed) | |
text_tokens = torch.IntTensor(self.tokenizer.encode(text)).unsqueeze(0).to(self.device) | |
text_tokens = F.pad(text_tokens, (0, 1)) # This may not be necessary. | |
assert ( | |
text_tokens.shape[-1] < 400 | |
), "Too much text provided. Break the text up into separate segments and re-try inference." | |
if voice_samples is not None: | |
( | |
auto_conditioning, | |
diffusion_conditioning, | |
_, | |
_, | |
) = self.get_conditioning_latents( | |
voice_samples, | |
return_mels=True, | |
latent_averaging_mode=latent_averaging_mode, | |
original_tortoise=original_tortoise, | |
) | |
elif conditioning_latents is not None: | |
auto_conditioning, diffusion_conditioning = conditioning_latents | |
else: | |
( | |
auto_conditioning, | |
diffusion_conditioning, | |
) = self.get_random_conditioning_latents() | |
auto_conditioning = auto_conditioning.to(self.device) | |
diffusion_conditioning = diffusion_conditioning.to(self.device) | |
diffuser = load_discrete_vocoder_diffuser( | |
desired_diffusion_steps=diffusion_iterations, cond_free=cond_free, cond_free_k=cond_free_k, sampler=sampler | |
) | |
# in the case of single_sample, | |
orig_batch_size = self.autoregressive_batch_size | |
while num_autoregressive_samples % self.autoregressive_batch_size: | |
self.autoregressive_batch_size //= 2 | |
with torch.no_grad(): | |
samples = [] | |
num_batches = num_autoregressive_samples // self.autoregressive_batch_size | |
stop_mel_token = self.autoregressive.stop_mel_token | |
calm_token = ( | |
83 # This is the token for coding silence, which is fixed in place with "fix_autoregressive_output" | |
) | |
self.autoregressive = self.autoregressive.to(self.device) | |
if verbose: | |
print("Generating autoregressive samples..") | |
with self.temporary_cuda(self.autoregressive) as autoregressive, torch.autocast( | |
device_type="cuda", dtype=torch.float16, enabled=half | |
): | |
for b in tqdm(range(num_batches), disable=not verbose): | |
codes = autoregressive.inference_speech( | |
auto_conditioning, | |
text_tokens, | |
do_sample=True, | |
top_p=top_p, | |
temperature=temperature, | |
num_return_sequences=self.autoregressive_batch_size, | |
length_penalty=length_penalty, | |
repetition_penalty=repetition_penalty, | |
max_generate_length=max_mel_tokens, | |
**hf_generate_kwargs, | |
) | |
padding_needed = max_mel_tokens - codes.shape[1] | |
codes = F.pad(codes, (0, padding_needed), value=stop_mel_token) | |
samples.append(codes) | |
self.autoregressive_batch_size = orig_batch_size # in the case of single_sample | |
clip_results = [] | |
with self.temporary_cuda(self.clvp) as clvp, torch.autocast( | |
device_type="cuda", dtype=torch.float16, enabled=half | |
): | |
for batch in tqdm(samples, disable=not verbose): | |
for i in range(batch.shape[0]): | |
batch[i] = fix_autoregressive_output(batch[i], stop_mel_token) | |
clvp_res = clvp( | |
text_tokens.repeat(batch.shape[0], 1), | |
batch, | |
return_loss=False, | |
) | |
clip_results.append(clvp_res) | |
clip_results = torch.cat(clip_results, dim=0) | |
samples = torch.cat(samples, dim=0) | |
best_results = samples[torch.topk(clip_results, k=k).indices] | |
del samples | |
# The diffusion model actually wants the last hidden layer from the autoregressive model as conditioning | |
# inputs. Re-produce those for the top results. This could be made more efficient by storing all of these | |
# results, but will increase memory usage. | |
with self.temporary_cuda(self.autoregressive) as autoregressive: | |
best_latents = autoregressive( | |
auto_conditioning.repeat(k, 1), | |
text_tokens.repeat(k, 1), | |
torch.tensor([text_tokens.shape[-1]], device=text_tokens.device), | |
best_results, | |
torch.tensor( | |
[best_results.shape[-1] * self.autoregressive.mel_length_compression], | |
device=text_tokens.device, | |
), | |
return_latent=True, | |
clip_inputs=False, | |
) | |
del auto_conditioning | |
if verbose: | |
print("Transforming autoregressive outputs into audio..") | |
wav_candidates = [] | |
for b in range(best_results.shape[0]): | |
codes = best_results[b].unsqueeze(0) | |
latents = best_latents[b].unsqueeze(0) | |
# Find the first occurrence of the "calm" token and trim the codes to that. | |
ctokens = 0 | |
for code in range(codes.shape[-1]): | |
if codes[0, code] == calm_token: | |
ctokens += 1 | |
else: | |
ctokens = 0 | |
if ctokens > 8: # 8 tokens gives the diffusion model some "breathing room" to terminate speech. | |
latents = latents[:, :code] | |
break | |
with self.temporary_cuda(self.diffusion) as diffusion: | |
mel = do_spectrogram_diffusion( | |
diffusion, | |
diffuser, | |
latents, | |
diffusion_conditioning, | |
temperature=diffusion_temperature, | |
verbose=verbose, | |
) | |
with self.temporary_cuda(self.vocoder) as vocoder: | |
wav = vocoder.inference(mel) | |
wav_candidates.append(wav.cpu()) | |
def potentially_redact(clip, text): | |
if self.enable_redaction: | |
return self.aligner.redact(clip.squeeze(1), text).unsqueeze(1) | |
return clip | |
wav_candidates = [potentially_redact(wav_candidate, text) for wav_candidate in wav_candidates] | |
if len(wav_candidates) > 1: | |
res = wav_candidates | |
else: | |
res = wav_candidates[0] | |
return_dict = { | |
"wav": res, | |
"deterministic_seed": None, | |
"text": None, | |
"voice_samples": None, | |
"conditioning_latents": None, | |
} | |
if return_deterministic_state: | |
return_dict = { | |
"wav": res, | |
"deterministic_seed": deterministic_seed, | |
"text": text, | |
"voice_samples": voice_samples, | |
"conditioning_latents": conditioning_latents, | |
} | |
return return_dict | |
def forward(self): | |
raise NotImplementedError("Tortoise Training is not implemented") | |
def eval_step(self): | |
raise NotImplementedError("Tortoise Training is not implemented") | |
def init_from_config(config: "TortoiseConfig", **kwargs): # pylint: disable=unused-argument | |
return Tortoise(config) | |
def load_checkpoint( | |
self, | |
config, | |
checkpoint_dir, | |
ar_checkpoint_path=None, | |
diff_checkpoint_path=None, | |
clvp_checkpoint_path=None, | |
vocoder_checkpoint_path=None, | |
eval=False, | |
strict=True, | |
**kwargs, | |
): # pylint: disable=unused-argument, redefined-builtin | |
"""Load a model checkpoints from a directory. This model is with multiple checkpoint files and it | |
expects to have all the files to be under the given `checkpoint_dir` with the rigth names. | |
If eval is True, set the model to eval mode. | |
Args: | |
config (TortoiseConfig): The model config. | |
checkpoint_dir (str): The directory where the checkpoints are stored. | |
ar_checkpoint_path (str, optional): The path to the autoregressive checkpoint. Defaults to None. | |
diff_checkpoint_path (str, optional): The path to the diffusion checkpoint. Defaults to None. | |
clvp_checkpoint_path (str, optional): The path to the CLVP checkpoint. Defaults to None. | |
vocoder_checkpoint_path (str, optional): The path to the vocoder checkpoint. Defaults to None. | |
eval (bool, optional): Whether to set the model to eval mode. Defaults to False. | |
strict (bool, optional): Whether to load the model strictly. Defaults to True. | |
""" | |
if self.models_dir is None: | |
self.models_dir = checkpoint_dir | |
ar_path = ar_checkpoint_path or os.path.join(checkpoint_dir, "autoregressive.pth") | |
diff_path = diff_checkpoint_path or os.path.join(checkpoint_dir, "diffusion_decoder.pth") | |
clvp_path = clvp_checkpoint_path or os.path.join(checkpoint_dir, "clvp2.pth") | |
vocoder_checkpoint_path = vocoder_checkpoint_path or os.path.join(checkpoint_dir, "vocoder.pth") | |
self.mel_norm_path = os.path.join(checkpoint_dir, "mel_norms.pth") | |
if os.path.exists(ar_path): | |
# remove keys from the checkpoint that are not in the model | |
checkpoint = torch.load(ar_path, map_location=torch.device("cpu")) | |
# strict set False | |
# due to removed `bias` and `masked_bias` changes in Transformers | |
self.autoregressive.load_state_dict(checkpoint, strict=False) | |
if os.path.exists(diff_path): | |
self.diffusion.load_state_dict(torch.load(diff_path), strict=strict) | |
if os.path.exists(clvp_path): | |
self.clvp.load_state_dict(torch.load(clvp_path), strict=strict) | |
if os.path.exists(vocoder_checkpoint_path): | |
self.vocoder.load_state_dict( | |
config.model_args.vocoder.value.optionally_index( | |
torch.load( | |
vocoder_checkpoint_path, | |
map_location=torch.device("cpu"), | |
) | |
) | |
) | |
if eval: | |
self.autoregressive.post_init_gpt2_config(self.args.kv_cache) | |
self.autoregressive.eval() | |
self.diffusion.eval() | |
self.clvp.eval() | |
self.vocoder.eval() | |
def train_step(self): | |
raise NotImplementedError("Tortoise Training is not implemented") | |