Spaces:
Running
Running
import os | |
from typing import Dict, List, Union | |
import torch | |
from coqpit import Coqpit | |
from torch import nn | |
from trainer.logging.tensorboard_logger import TensorboardLogger | |
from TTS.tts.layers.overflow.common_layers import Encoder, OverflowUtils | |
from TTS.tts.layers.overflow.decoder import Decoder | |
from TTS.tts.layers.overflow.neural_hmm import NeuralHMM | |
from TTS.tts.layers.overflow.plotting_utils import ( | |
get_spec_from_most_probable_state, | |
plot_transition_probabilities_to_numpy, | |
) | |
from TTS.tts.models.base_tts import BaseTTS | |
from TTS.tts.utils.speakers import SpeakerManager | |
from TTS.tts.utils.text.tokenizer import TTSTokenizer | |
from TTS.tts.utils.visual import plot_alignment, plot_spectrogram | |
from TTS.utils.generic_utils import format_aux_input | |
from TTS.utils.io import load_fsspec | |
class Overflow(BaseTTS): | |
"""OverFlow TTS model. | |
Paper:: | |
https://arxiv.org/abs/2211.06892 | |
Paper abstract:: | |
Neural HMMs are a type of neural transducer recently proposed for | |
sequence-to-sequence modelling in text-to-speech. They combine the best features | |
of classic statistical speech synthesis and modern neural TTS, requiring less | |
data and fewer training updates, and are less prone to gibberish output caused | |
by neural attention failures. In this paper, we combine neural HMM TTS with | |
normalising flows for describing the highly non-Gaussian distribution of speech | |
acoustics. The result is a powerful, fully probabilistic model of durations and | |
acoustics that can be trained using exact maximum likelihood. Compared to | |
dominant flow-based acoustic models, our approach integrates autoregression for | |
improved modelling of long-range dependences such as utterance-level prosody. | |
Experiments show that a system based on our proposal gives more accurate | |
pronunciations and better subjective speech quality than comparable methods, | |
whilst retaining the original advantages of neural HMMs. Audio examples and code | |
are available at https://shivammehta25.github.io/OverFlow/. | |
Note: | |
- Neural HMMs uses flat start initialization i.e it computes the means and std and transition probabilities | |
of the dataset and uses them to initialize the model. This benefits the model and helps with faster learning | |
If you change the dataset or want to regenerate the parameters change the `force_generate_statistics` and | |
`mel_statistics_parameter_path` accordingly. | |
- To enable multi-GPU training, set the `use_grad_checkpointing=False` in config. | |
This will significantly increase the memory usage. This is because to compute | |
the actual data likelihood (not an approximation using MAS/Viterbi) we must use | |
all the states at the previous time step during the forward pass to decide the | |
probability distribution at the current step i.e the difference between the forward | |
algorithm and viterbi approximation. | |
Check :class:`TTS.tts.configs.overflow.OverFlowConfig` for class arguments. | |
""" | |
def __init__( | |
self, | |
config: "OverFlowConfig", | |
ap: "AudioProcessor" = None, | |
tokenizer: "TTSTokenizer" = None, | |
speaker_manager: SpeakerManager = None, | |
): | |
super().__init__(config, ap, tokenizer, speaker_manager) | |
# pass all config fields to `self` | |
# for fewer code change | |
self.config = config | |
for key in config: | |
setattr(self, key, config[key]) | |
self.decoder_output_dim = config.out_channels | |
self.encoder = Encoder(config.num_chars, config.state_per_phone, config.encoder_in_out_features) | |
self.neural_hmm = NeuralHMM( | |
frame_channels=self.out_channels, | |
ar_order=self.ar_order, | |
deterministic_transition=self.deterministic_transition, | |
encoder_dim=self.encoder_in_out_features, | |
prenet_type=self.prenet_type, | |
prenet_dim=self.prenet_dim, | |
prenet_n_layers=self.prenet_n_layers, | |
prenet_dropout=self.prenet_dropout, | |
prenet_dropout_at_inference=self.prenet_dropout_at_inference, | |
memory_rnn_dim=self.memory_rnn_dim, | |
outputnet_size=self.outputnet_size, | |
flat_start_params=self.flat_start_params, | |
std_floor=self.std_floor, | |
use_grad_checkpointing=self.use_grad_checkpointing, | |
) | |
self.decoder = Decoder( | |
self.out_channels, | |
self.hidden_channels_dec, | |
self.kernel_size_dec, | |
self.dilation_rate, | |
self.num_flow_blocks_dec, | |
self.num_block_layers, | |
dropout_p=self.dropout_p_dec, | |
num_splits=self.num_splits, | |
num_squeeze=self.num_squeeze, | |
sigmoid_scale=self.sigmoid_scale, | |
c_in_channels=self.c_in_channels, | |
) | |
self.register_buffer("mean", torch.tensor(0)) | |
self.register_buffer("std", torch.tensor(1)) | |
def update_mean_std(self, statistics_dict: Dict): | |
self.mean.data = torch.tensor(statistics_dict["mean"]) | |
self.std.data = torch.tensor(statistics_dict["std"]) | |
def preprocess_batch(self, text, text_len, mels, mel_len): | |
if self.mean.item() == 0 or self.std.item() == 1: | |
statistics_dict = torch.load(self.mel_statistics_parameter_path) | |
self.update_mean_std(statistics_dict) | |
mels = self.normalize(mels) | |
return text, text_len, mels, mel_len | |
def normalize(self, x): | |
return x.sub(self.mean).div(self.std) | |
def inverse_normalize(self, x): | |
return x.mul(self.std).add(self.mean) | |
def forward(self, text, text_len, mels, mel_len): | |
""" | |
Forward pass for training and computing the log likelihood of a given batch. | |
Shapes: | |
Shapes: | |
text: :math:`[B, T_in]` | |
text_len: :math:`[B]` | |
mels: :math:`[B, T_out, C]` | |
mel_len: :math:`[B]` | |
""" | |
text, text_len, mels, mel_len = self.preprocess_batch(text, text_len, mels, mel_len) | |
encoder_outputs, encoder_output_len = self.encoder(text, text_len) | |
z, z_lengths, logdet = self.decoder(mels.transpose(1, 2), mel_len) | |
log_probs, fwd_alignments, transition_vectors, means = self.neural_hmm( | |
encoder_outputs, encoder_output_len, z, z_lengths | |
) | |
outputs = { | |
"log_probs": log_probs + logdet, | |
"alignments": fwd_alignments, | |
"transition_vectors": transition_vectors, | |
"means": means, | |
} | |
return outputs | |
def _training_stats(batch): | |
stats = {} | |
stats["avg_text_length"] = batch["text_lengths"].float().mean() | |
stats["avg_spec_length"] = batch["mel_lengths"].float().mean() | |
stats["avg_text_batch_occupancy"] = (batch["text_lengths"].float() / batch["text_lengths"].float().max()).mean() | |
stats["avg_spec_batch_occupancy"] = (batch["mel_lengths"].float() / batch["mel_lengths"].float().max()).mean() | |
return stats | |
def train_step(self, batch: dict, criterion: nn.Module): | |
text_input = batch["text_input"] | |
text_lengths = batch["text_lengths"] | |
mel_input = batch["mel_input"] | |
mel_lengths = batch["mel_lengths"] | |
outputs = self.forward( | |
text=text_input, | |
text_len=text_lengths, | |
mels=mel_input, | |
mel_len=mel_lengths, | |
) | |
loss_dict = criterion(outputs["log_probs"] / (mel_lengths.sum() + text_lengths.sum())) | |
# for printing useful statistics on terminal | |
loss_dict.update(self._training_stats(batch)) | |
return outputs, loss_dict | |
def eval_step(self, batch: Dict, criterion: nn.Module): | |
return self.train_step(batch, criterion) | |
def _format_aux_input(self, aux_input: Dict, default_input_dict): | |
"""Set missing fields to their default value. | |
Args: | |
aux_inputs (Dict): Dictionary containing the auxiliary inputs. | |
""" | |
default_input_dict = default_input_dict.copy() | |
default_input_dict.update( | |
{ | |
"sampling_temp": self.sampling_temp, | |
"max_sampling_time": self.max_sampling_time, | |
"duration_threshold": self.duration_threshold, | |
} | |
) | |
if aux_input: | |
return format_aux_input(default_input_dict, aux_input) | |
return default_input_dict | |
def inference( | |
self, | |
text: torch.Tensor, | |
aux_input={"x_lengths": None, "sampling_temp": None, "max_sampling_time": None, "duration_threshold": None}, | |
): # pylint: disable=dangerous-default-value | |
"""Sampling from the model | |
Args: | |
text (torch.Tensor): :math:`[B, T_in]` | |
aux_inputs (_type_, optional): _description_. Defaults to None. | |
Returns: | |
outputs: Dictionary containing the following | |
- mel (torch.Tensor): :math:`[B, T_out, C]` | |
- hmm_outputs_len (torch.Tensor): :math:`[B]` | |
- state_travelled (List[List[int]]): List of lists containing the state travelled for each sample in the batch. | |
- input_parameters (list[torch.FloatTensor]): Input parameters to the neural HMM. | |
- output_parameters (list[torch.FloatTensor]): Output parameters to the neural HMM. | |
""" | |
default_input_dict = { | |
"x_lengths": torch.sum(text != 0, dim=1), | |
} | |
aux_input = self._format_aux_input(aux_input, default_input_dict) | |
encoder_outputs, encoder_output_len = self.encoder.inference(text, aux_input["x_lengths"]) | |
outputs = self.neural_hmm.inference( | |
encoder_outputs, | |
encoder_output_len, | |
sampling_temp=aux_input["sampling_temp"], | |
max_sampling_time=aux_input["max_sampling_time"], | |
duration_threshold=aux_input["duration_threshold"], | |
) | |
mels, mel_outputs_len, _ = self.decoder( | |
outputs["hmm_outputs"].transpose(1, 2), outputs["hmm_outputs_len"], reverse=True | |
) | |
mels = self.inverse_normalize(mels.transpose(1, 2)) | |
outputs.update({"model_outputs": mels, "model_outputs_len": mel_outputs_len}) | |
outputs["alignments"] = OverflowUtils.double_pad(outputs["alignments"]) | |
return outputs | |
def get_criterion(): | |
return NLLLoss() | |
def init_from_config(config: "OverFlowConfig", samples: Union[List[List], List[Dict]] = None, verbose=True): | |
"""Initiate model from config | |
Args: | |
config (VitsConfig): Model config. | |
samples (Union[List[List], List[Dict]]): Training samples to parse speaker ids for training. | |
Defaults to None. | |
verbose (bool): If True, print init messages. Defaults to True. | |
""" | |
from TTS.utils.audio import AudioProcessor | |
ap = AudioProcessor.init_from_config(config, verbose) | |
tokenizer, new_config = TTSTokenizer.init_from_config(config) | |
speaker_manager = SpeakerManager.init_from_config(config, samples) | |
return Overflow(new_config, ap, tokenizer, speaker_manager) | |
def load_checkpoint( | |
self, config: Coqpit, checkpoint_path: str, eval: bool = False, strict: bool = True, cache=False | |
): # pylint: disable=unused-argument, redefined-builtin | |
state = load_fsspec(checkpoint_path, map_location=torch.device("cpu")) | |
self.load_state_dict(state["model"]) | |
if eval: | |
self.eval() | |
self.decoder.store_inverse() | |
assert not self.training | |
def on_init_start(self, trainer): | |
"""If the current dataset does not have normalisation statistics and initialisation transition_probability it computes them otherwise loads.""" | |
if not os.path.isfile(trainer.config.mel_statistics_parameter_path) or trainer.config.force_generate_statistics: | |
dataloader = trainer.get_train_dataloader( | |
training_assets=None, samples=trainer.train_samples, verbose=False | |
) | |
print( | |
f" | > Data parameters not found for: {trainer.config.mel_statistics_parameter_path}. Computing mel normalization parameters..." | |
) | |
data_mean, data_std, init_transition_prob = OverflowUtils.get_data_parameters_for_flat_start( | |
dataloader, trainer.config.out_channels, trainer.config.state_per_phone | |
) | |
print( | |
f" | > Saving data parameters to: {trainer.config.mel_statistics_parameter_path}: value: {data_mean, data_std, init_transition_prob}" | |
) | |
statistics = { | |
"mean": data_mean.item(), | |
"std": data_std.item(), | |
"init_transition_prob": init_transition_prob.item(), | |
} | |
torch.save(statistics, trainer.config.mel_statistics_parameter_path) | |
else: | |
print( | |
f" | > Data parameters found for: {trainer.config.mel_statistics_parameter_path}. Loading mel normalization parameters..." | |
) | |
statistics = torch.load(trainer.config.mel_statistics_parameter_path) | |
data_mean, data_std, init_transition_prob = ( | |
statistics["mean"], | |
statistics["std"], | |
statistics["init_transition_prob"], | |
) | |
print(f" | > Data parameters loaded with value: {data_mean, data_std, init_transition_prob}") | |
trainer.config.flat_start_params["transition_p"] = ( | |
init_transition_prob.item() if torch.is_tensor(init_transition_prob) else init_transition_prob | |
) | |
OverflowUtils.update_flat_start_transition(trainer.model, init_transition_prob) | |
trainer.model.update_mean_std(statistics) | |
def _create_logs(self, batch, outputs, ap): # pylint: disable=no-self-use, unused-argument | |
alignments, transition_vectors = outputs["alignments"], outputs["transition_vectors"] | |
means = torch.stack(outputs["means"], dim=1) | |
figures = { | |
"alignment": plot_alignment(alignments[0].exp(), title="Forward alignment", fig_size=(20, 20)), | |
"log_alignment": plot_alignment( | |
alignments[0].exp(), title="Forward log alignment", plot_log=True, fig_size=(20, 20) | |
), | |
"transition_vectors": plot_alignment(transition_vectors[0], title="Transition vectors", fig_size=(20, 20)), | |
"mel_from_most_probable_state": plot_spectrogram( | |
get_spec_from_most_probable_state(alignments[0], means[0], self.decoder), fig_size=(12, 3) | |
), | |
"mel_target": plot_spectrogram(batch["mel_input"][0], fig_size=(12, 3)), | |
} | |
# sample one item from the batch -1 will give the smalles item | |
print(" | > Synthesising audio from the model...") | |
inference_output = self.inference( | |
batch["text_input"][-1].unsqueeze(0), aux_input={"x_lengths": batch["text_lengths"][-1].unsqueeze(0)} | |
) | |
figures["synthesised"] = plot_spectrogram(inference_output["model_outputs"][0], fig_size=(12, 3)) | |
states = [p[1] for p in inference_output["input_parameters"][0]] | |
transition_probability_synthesising = [p[2].cpu().numpy() for p in inference_output["output_parameters"][0]] | |
for i in range((len(transition_probability_synthesising) // 200) + 1): | |
start = i * 200 | |
end = (i + 1) * 200 | |
figures[f"synthesised_transition_probabilities/{i}"] = plot_transition_probabilities_to_numpy( | |
states[start:end], transition_probability_synthesising[start:end] | |
) | |
audio = ap.inv_melspectrogram(inference_output["model_outputs"][0].T.cpu().numpy()) | |
return figures, {"audios": audio} | |
def train_log( | |
self, batch: dict, outputs: dict, logger: "Logger", assets: dict, steps: int | |
): # pylint: disable=unused-argument | |
"""Log training progress.""" | |
figures, audios = self._create_logs(batch, outputs, self.ap) | |
logger.train_figures(steps, figures) | |
logger.train_audios(steps, audios, self.ap.sample_rate) | |
def eval_log( | |
self, batch: Dict, outputs: Dict, logger: "Logger", assets: Dict, steps: int | |
): # pylint: disable=unused-argument | |
"""Compute and log evaluation metrics.""" | |
# Plot model parameters histograms | |
if isinstance(logger, TensorboardLogger): | |
# I don't know if any other loggers supports this | |
for tag, value in self.named_parameters(): | |
tag = tag.replace(".", "/") | |
logger.writer.add_histogram(tag, value.data.cpu().numpy(), steps) | |
figures, audios = self._create_logs(batch, outputs, self.ap) | |
logger.eval_figures(steps, figures) | |
logger.eval_audios(steps, audios, self.ap.sample_rate) | |
def test_log( | |
self, outputs: dict, logger: "Logger", assets: dict, steps: int # pylint: disable=unused-argument | |
) -> None: | |
logger.test_audios(steps, outputs[1], self.ap.sample_rate) | |
logger.test_figures(steps, outputs[0]) | |
class NLLLoss(nn.Module): | |
"""Negative log likelihood loss.""" | |
def forward(self, log_prob: torch.Tensor) -> dict: # pylint: disable=no-self-use | |
"""Compute the loss. | |
Args: | |
logits (Tensor): [B, T, D] | |
Returns: | |
Tensor: [1] | |
""" | |
return_dict = {} | |
return_dict["loss"] = -log_prob.mean() | |
return return_dict | |