Spaces:
Running
Running
import torch | |
from torch import nn | |
# from TTS.utils.audio.torch_transforms import TorchSTFT | |
from TTS.encoder.models.base_encoder import BaseEncoder | |
class SELayer(nn.Module): | |
def __init__(self, channel, reduction=8): | |
super(SELayer, self).__init__() | |
self.avg_pool = nn.AdaptiveAvgPool2d(1) | |
self.fc = nn.Sequential( | |
nn.Linear(channel, channel // reduction), | |
nn.ReLU(inplace=True), | |
nn.Linear(channel // reduction, channel), | |
nn.Sigmoid(), | |
) | |
def forward(self, x): | |
b, c, _, _ = x.size() | |
y = self.avg_pool(x).view(b, c) | |
y = self.fc(y).view(b, c, 1, 1) | |
return x * y | |
class SEBasicBlock(nn.Module): | |
expansion = 1 | |
def __init__(self, inplanes, planes, stride=1, downsample=None, reduction=8): | |
super(SEBasicBlock, self).__init__() | |
self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=3, stride=stride, padding=1, bias=False) | |
self.bn1 = nn.BatchNorm2d(planes) | |
self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, padding=1, bias=False) | |
self.bn2 = nn.BatchNorm2d(planes) | |
self.relu = nn.ReLU(inplace=True) | |
self.se = SELayer(planes, reduction) | |
self.downsample = downsample | |
self.stride = stride | |
def forward(self, x): | |
residual = x | |
out = self.conv1(x) | |
out = self.relu(out) | |
out = self.bn1(out) | |
out = self.conv2(out) | |
out = self.bn2(out) | |
out = self.se(out) | |
if self.downsample is not None: | |
residual = self.downsample(x) | |
out += residual | |
out = self.relu(out) | |
return out | |
class ResNetSpeakerEncoder(BaseEncoder): | |
"""Implementation of the model H/ASP without batch normalization in speaker embedding. This model was proposed in: https://arxiv.org/abs/2009.14153 | |
Adapted from: https://github.com/clovaai/voxceleb_trainer | |
""" | |
# pylint: disable=W0102 | |
def __init__( | |
self, | |
input_dim=64, | |
proj_dim=512, | |
layers=[3, 4, 6, 3], | |
num_filters=[32, 64, 128, 256], | |
encoder_type="ASP", | |
log_input=False, | |
use_torch_spec=False, | |
audio_config=None, | |
): | |
super(ResNetSpeakerEncoder, self).__init__() | |
self.encoder_type = encoder_type | |
self.input_dim = input_dim | |
self.log_input = log_input | |
self.use_torch_spec = use_torch_spec | |
self.audio_config = audio_config | |
self.proj_dim = proj_dim | |
self.conv1 = nn.Conv2d(1, num_filters[0], kernel_size=3, stride=1, padding=1) | |
self.relu = nn.ReLU(inplace=True) | |
self.bn1 = nn.BatchNorm2d(num_filters[0]) | |
self.inplanes = num_filters[0] | |
self.layer1 = self.create_layer(SEBasicBlock, num_filters[0], layers[0]) | |
self.layer2 = self.create_layer(SEBasicBlock, num_filters[1], layers[1], stride=(2, 2)) | |
self.layer3 = self.create_layer(SEBasicBlock, num_filters[2], layers[2], stride=(2, 2)) | |
self.layer4 = self.create_layer(SEBasicBlock, num_filters[3], layers[3], stride=(2, 2)) | |
self.instancenorm = nn.InstanceNorm1d(input_dim) | |
if self.use_torch_spec: | |
self.torch_spec = self.get_torch_mel_spectrogram_class(audio_config) | |
else: | |
self.torch_spec = None | |
outmap_size = int(self.input_dim / 8) | |
self.attention = nn.Sequential( | |
nn.Conv1d(num_filters[3] * outmap_size, 128, kernel_size=1), | |
nn.ReLU(), | |
nn.BatchNorm1d(128), | |
nn.Conv1d(128, num_filters[3] * outmap_size, kernel_size=1), | |
nn.Softmax(dim=2), | |
) | |
if self.encoder_type == "SAP": | |
out_dim = num_filters[3] * outmap_size | |
elif self.encoder_type == "ASP": | |
out_dim = num_filters[3] * outmap_size * 2 | |
else: | |
raise ValueError("Undefined encoder") | |
self.fc = nn.Linear(out_dim, proj_dim) | |
self._init_layers() | |
def _init_layers(self): | |
for m in self.modules(): | |
if isinstance(m, nn.Conv2d): | |
nn.init.kaiming_normal_(m.weight, mode="fan_out", nonlinearity="relu") | |
elif isinstance(m, nn.BatchNorm2d): | |
nn.init.constant_(m.weight, 1) | |
nn.init.constant_(m.bias, 0) | |
def create_layer(self, block, planes, blocks, stride=1): | |
downsample = None | |
if stride != 1 or self.inplanes != planes * block.expansion: | |
downsample = nn.Sequential( | |
nn.Conv2d(self.inplanes, planes * block.expansion, kernel_size=1, stride=stride, bias=False), | |
nn.BatchNorm2d(planes * block.expansion), | |
) | |
layers = [] | |
layers.append(block(self.inplanes, planes, stride, downsample)) | |
self.inplanes = planes * block.expansion | |
for _ in range(1, blocks): | |
layers.append(block(self.inplanes, planes)) | |
return nn.Sequential(*layers) | |
# pylint: disable=R0201 | |
def new_parameter(self, *size): | |
out = nn.Parameter(torch.FloatTensor(*size)) | |
nn.init.xavier_normal_(out) | |
return out | |
def forward(self, x, l2_norm=False): | |
"""Forward pass of the model. | |
Args: | |
x (Tensor): Raw waveform signal or spectrogram frames. If input is a waveform, `torch_spec` must be `True` | |
to compute the spectrogram on-the-fly. | |
l2_norm (bool): Whether to L2-normalize the outputs. | |
Shapes: | |
- x: :math:`(N, 1, T_{in})` or :math:`(N, D_{spec}, T_{in})` | |
""" | |
x.squeeze_(1) | |
# if you torch spec compute it otherwise use the mel spec computed by the AP | |
if self.use_torch_spec: | |
x = self.torch_spec(x) | |
if self.log_input: | |
x = (x + 1e-6).log() | |
x = self.instancenorm(x).unsqueeze(1) | |
x = self.conv1(x) | |
x = self.relu(x) | |
x = self.bn1(x) | |
x = self.layer1(x) | |
x = self.layer2(x) | |
x = self.layer3(x) | |
x = self.layer4(x) | |
x = x.reshape(x.size()[0], -1, x.size()[-1]) | |
w = self.attention(x) | |
if self.encoder_type == "SAP": | |
x = torch.sum(x * w, dim=2) | |
elif self.encoder_type == "ASP": | |
mu = torch.sum(x * w, dim=2) | |
sg = torch.sqrt((torch.sum((x**2) * w, dim=2) - mu**2).clamp(min=1e-5)) | |
x = torch.cat((mu, sg), 1) | |
x = x.view(x.size()[0], -1) | |
x = self.fc(x) | |
if l2_norm: | |
x = torch.nn.functional.normalize(x, p=2, dim=1) | |
return x | |