Spaces:
Running
Running
from dataclasses import dataclass, field | |
from typing import List | |
from TTS.tts.configs.shared_configs import BaseTTSConfig | |
from TTS.tts.models.vits import VitsArgs, VitsAudioConfig | |
class VitsConfig(BaseTTSConfig): | |
"""Defines parameters for VITS End2End TTS model. | |
Args: | |
model (str): | |
Model name. Do not change unless you know what you are doing. | |
model_args (VitsArgs): | |
Model architecture arguments. Defaults to `VitsArgs()`. | |
audio (VitsAudioConfig): | |
Audio processing configuration. Defaults to `VitsAudioConfig()`. | |
grad_clip (List): | |
Gradient clipping thresholds for each optimizer. Defaults to `[1000.0, 1000.0]`. | |
lr_gen (float): | |
Initial learning rate for the generator. Defaults to 0.0002. | |
lr_disc (float): | |
Initial learning rate for the discriminator. Defaults to 0.0002. | |
lr_scheduler_gen (str): | |
Name of the learning rate scheduler for the generator. One of the `torch.optim.lr_scheduler.*`. Defaults to | |
`ExponentialLR`. | |
lr_scheduler_gen_params (dict): | |
Parameters for the learning rate scheduler of the generator. Defaults to `{'gamma': 0.999875, "last_epoch":-1}`. | |
lr_scheduler_disc (str): | |
Name of the learning rate scheduler for the discriminator. One of the `torch.optim.lr_scheduler.*`. Defaults to | |
`ExponentialLR`. | |
lr_scheduler_disc_params (dict): | |
Parameters for the learning rate scheduler of the discriminator. Defaults to `{'gamma': 0.999875, "last_epoch":-1}`. | |
scheduler_after_epoch (bool): | |
If true, step the schedulers after each epoch else after each step. Defaults to `False`. | |
optimizer (str): | |
Name of the optimizer to use with both the generator and the discriminator networks. One of the | |
`torch.optim.*`. Defaults to `AdamW`. | |
kl_loss_alpha (float): | |
Loss weight for KL loss. Defaults to 1.0. | |
disc_loss_alpha (float): | |
Loss weight for the discriminator loss. Defaults to 1.0. | |
gen_loss_alpha (float): | |
Loss weight for the generator loss. Defaults to 1.0. | |
feat_loss_alpha (float): | |
Loss weight for the feature matching loss. Defaults to 1.0. | |
mel_loss_alpha (float): | |
Loss weight for the mel loss. Defaults to 45.0. | |
return_wav (bool): | |
If true, data loader returns the waveform as well as the other outputs. Do not change. Defaults to `True`. | |
compute_linear_spec (bool): | |
If true, the linear spectrogram is computed and returned alongside the mel output. Do not change. Defaults to `True`. | |
use_weighted_sampler (bool): | |
If true, use weighted sampler with bucketing for balancing samples between datasets used in training. Defaults to `False`. | |
weighted_sampler_attrs (dict): | |
Key retuned by the formatter to be used for weighted sampler. For example `{"root_path": 2.0, "speaker_name": 1.0}` sets sample probabilities | |
by overweighting `root_path` by 2.0. Defaults to `{}`. | |
weighted_sampler_multipliers (dict): | |
Weight each unique value of a key returned by the formatter for weighted sampling. | |
For example `{"root_path":{"/raid/datasets/libritts-clean-16khz-bwe-coqui_44khz/LibriTTS/train-clean-100/":1.0, "/raid/datasets/libritts-clean-16khz-bwe-coqui_44khz/LibriTTS/train-clean-360/": 0.5}`. | |
It will sample instances from `train-clean-100` 2 times more than `train-clean-360`. Defaults to `{}`. | |
r (int): | |
Number of spectrogram frames to be generated at a time. Do not change. Defaults to `1`. | |
add_blank (bool): | |
If true, a blank token is added in between every character. Defaults to `True`. | |
test_sentences (List[List]): | |
List of sentences with speaker and language information to be used for testing. | |
language_ids_file (str): | |
Path to the language ids file. | |
use_language_embedding (bool): | |
If true, language embedding is used. Defaults to `False`. | |
Note: | |
Check :class:`TTS.tts.configs.shared_configs.BaseTTSConfig` for the inherited parameters. | |
Example: | |
>>> from TTS.tts.configs.vits_config import VitsConfig | |
>>> config = VitsConfig() | |
""" | |
model: str = "vits" | |
# model specific params | |
model_args: VitsArgs = field(default_factory=VitsArgs) | |
audio: VitsAudioConfig = field(default_factory=VitsAudioConfig) | |
# optimizer | |
grad_clip: List[float] = field(default_factory=lambda: [1000, 1000]) | |
lr_gen: float = 0.0002 | |
lr_disc: float = 0.0002 | |
lr_scheduler_gen: str = "ExponentialLR" | |
lr_scheduler_gen_params: dict = field(default_factory=lambda: {"gamma": 0.999875, "last_epoch": -1}) | |
lr_scheduler_disc: str = "ExponentialLR" | |
lr_scheduler_disc_params: dict = field(default_factory=lambda: {"gamma": 0.999875, "last_epoch": -1}) | |
scheduler_after_epoch: bool = True | |
optimizer: str = "AdamW" | |
optimizer_params: dict = field(default_factory=lambda: {"betas": [0.8, 0.99], "eps": 1e-9, "weight_decay": 0.01}) | |
# loss params | |
kl_loss_alpha: float = 1.0 | |
disc_loss_alpha: float = 1.0 | |
gen_loss_alpha: float = 1.0 | |
feat_loss_alpha: float = 1.0 | |
mel_loss_alpha: float = 45.0 | |
dur_loss_alpha: float = 1.0 | |
speaker_encoder_loss_alpha: float = 1.0 | |
# data loader params | |
return_wav: bool = True | |
compute_linear_spec: bool = True | |
# sampler params | |
use_weighted_sampler: bool = False # TODO: move it to the base config | |
weighted_sampler_attrs: dict = field(default_factory=lambda: {}) | |
weighted_sampler_multipliers: dict = field(default_factory=lambda: {}) | |
# overrides | |
r: int = 1 # DO NOT CHANGE | |
add_blank: bool = True | |
# testing | |
test_sentences: List[List] = field( | |
default_factory=lambda: [ | |
["It took me quite a long time to develop a voice, and now that I have it I'm not going to be silent."], | |
["Be a voice, not an echo."], | |
["I'm sorry Dave. I'm afraid I can't do that."], | |
["This cake is great. It's so delicious and moist."], | |
["Prior to November 22, 1963."], | |
] | |
) | |
# multi-speaker settings | |
# use speaker embedding layer | |
num_speakers: int = 0 | |
use_speaker_embedding: bool = False | |
speakers_file: str = None | |
speaker_embedding_channels: int = 256 | |
language_ids_file: str = None | |
use_language_embedding: bool = False | |
# use d-vectors | |
use_d_vector_file: bool = False | |
d_vector_file: List[str] = None | |
d_vector_dim: int = None | |
def __post_init__(self): | |
for key, val in self.model_args.items(): | |
if hasattr(self, key): | |
self[key] = val | |