Spaces:
Running
Running
""" | |
Much of this code is adapted from Andrej Karpathy's NanoGPT | |
(https://github.com/karpathy/nanoGPT) | |
""" | |
import math | |
from dataclasses import dataclass | |
import torch | |
from coqpit import Coqpit | |
from torch import nn | |
from torch.nn import functional as F | |
class LayerNorm(nn.Module): | |
"""LayerNorm but with an optional bias. PyTorch doesn't support simply bias=False""" | |
def __init__(self, ndim, bias): | |
super().__init__() | |
self.weight = nn.Parameter(torch.ones(ndim)) | |
self.bias = nn.Parameter(torch.zeros(ndim)) if bias else None | |
def forward(self, x): | |
return F.layer_norm(x, self.weight.shape, self.weight, self.bias, 1e-5) | |
class CausalSelfAttention(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
assert config.n_embd % config.n_head == 0 | |
# key, query, value projections for all heads, but in a batch | |
self.c_attn = nn.Linear(config.n_embd, 3 * config.n_embd, bias=config.bias) | |
# output projection | |
self.c_proj = nn.Linear(config.n_embd, config.n_embd, bias=config.bias) | |
# regularization | |
self.attn_dropout = nn.Dropout(config.dropout) | |
self.resid_dropout = nn.Dropout(config.dropout) | |
self.n_head = config.n_head | |
self.n_embd = config.n_embd | |
self.dropout = config.dropout | |
# flash attention make GPU go brrrrr but support is only in PyTorch nightly and still a bit scary | |
self.flash = hasattr(torch.nn.functional, "scaled_dot_product_attention") | |
if not self.flash: | |
# print("WARNING: using slow attention. Flash Attention atm needs PyTorch nightly and dropout=0.0") | |
# causal mask to ensure that attention is only applied to the left in the input sequence | |
self.register_buffer( | |
"bias", | |
torch.tril(torch.ones(config.block_size, config.block_size)).view( | |
1, 1, config.block_size, config.block_size | |
), | |
) | |
def forward(self, x, past_kv=None, use_cache=False): | |
B, T, C = x.size() # batch size, sequence length, embedding dimensionality (n_embd) | |
# calculate query, key, values for all heads in batch and move head forward to be the batch dim | |
q, k, v = self.c_attn(x).split(self.n_embd, dim=2) | |
k = k.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs) | |
q = q.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs) | |
v = v.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs) | |
if past_kv is not None: | |
past_key = past_kv[0] | |
past_value = past_kv[1] | |
k = torch.cat((past_key, k), dim=-2) | |
v = torch.cat((past_value, v), dim=-2) | |
FULL_T = k.shape[-2] | |
if use_cache is True: | |
present = (k, v) | |
else: | |
present = None | |
# causal self-attention; Self-attend: (B, nh, T, hs) x (B, nh, hs, T) -> (B, nh, T, T) | |
if self.flash: | |
# efficient attention using Flash Attention CUDA kernels | |
if past_kv is not None: | |
# When `past_kv` is provided, we're doing incremental decoding and `q.shape[2] == 1`: q only contains | |
# the query for the last token. scaled_dot_product_attention interprets this as the first token in the | |
# sequence, so if is_causal=True it will mask out all attention from it. This is not what we want, so | |
# to work around this we set is_causal=False. | |
is_causal = False | |
else: | |
is_causal = True | |
# efficient attention using Flash Attention CUDA kernels | |
y = torch.nn.functional.scaled_dot_product_attention(q, k, v, dropout_p=self.dropout, is_causal=is_causal) | |
else: | |
# manual implementation of attention | |
att = (q @ k.transpose(-2, -1)) * (1.0 / math.sqrt(k.size(-1))) | |
att = att.masked_fill(self.bias[:, :, FULL_T - T : FULL_T, :FULL_T] == 0, float("-inf")) | |
att = F.softmax(att, dim=-1) | |
att = self.attn_dropout(att) | |
y = att @ v # (B, nh, T, T) x (B, nh, T, hs) -> (B, nh, T, hs) | |
y = y.transpose(1, 2).contiguous().view(B, T, C) # re-assemble all head outputs side by side | |
# output projection | |
y = self.resid_dropout(self.c_proj(y)) | |
return (y, present) | |
class MLP(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
self.c_fc = nn.Linear(config.n_embd, 4 * config.n_embd, bias=config.bias) | |
self.c_proj = nn.Linear(4 * config.n_embd, config.n_embd, bias=config.bias) | |
self.dropout = nn.Dropout(config.dropout) | |
self.gelu = nn.GELU() | |
def forward(self, x): | |
x = self.c_fc(x) | |
x = self.gelu(x) | |
x = self.c_proj(x) | |
x = self.dropout(x) | |
return x | |
class Block(nn.Module): | |
def __init__(self, config, layer_idx): | |
super().__init__() | |
self.ln_1 = LayerNorm(config.n_embd, bias=config.bias) | |
self.attn = CausalSelfAttention(config) | |
self.ln_2 = LayerNorm(config.n_embd, bias=config.bias) | |
self.mlp = MLP(config) | |
self.layer_idx = layer_idx | |
def forward(self, x, past_kv=None, use_cache=False): | |
attn_output, prev_kvs = self.attn(self.ln_1(x), past_kv=past_kv, use_cache=use_cache) | |
x = x + attn_output | |
x = x + self.mlp(self.ln_2(x)) | |
return (x, prev_kvs) | |
class GPTConfig(Coqpit): | |
block_size: int = 1024 | |
input_vocab_size: int = 10_048 | |
output_vocab_size: int = 10_048 | |
n_layer: int = 12 | |
n_head: int = 12 | |
n_embd: int = 768 | |
dropout: float = 0.0 | |
bias: bool = True # True: bias in Linears and LayerNorms, like GPT-2. False: a bit better and faster | |
class GPT(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
assert config.input_vocab_size is not None | |
assert config.output_vocab_size is not None | |
assert config.block_size is not None | |
self.config = config | |
self.transformer = nn.ModuleDict( | |
dict( | |
wte=nn.Embedding(config.input_vocab_size, config.n_embd), | |
wpe=nn.Embedding(config.block_size, config.n_embd), | |
drop=nn.Dropout(config.dropout), | |
h=nn.ModuleList([Block(config, idx) for idx in range(config.n_layer)]), | |
ln_f=LayerNorm(config.n_embd, bias=config.bias), | |
) | |
) | |
self.lm_head = nn.Linear(config.n_embd, config.output_vocab_size, bias=False) | |
def get_num_params(self, non_embedding=True): | |
""" | |
Return the number of parameters in the model. | |
For non-embedding count (default), the position embeddings get subtracted. | |
The token embeddings would too, except due to the parameter sharing these | |
params are actually used as weights in the final layer, so we include them. | |
""" | |
n_params = sum(p.numel() for p in self.parameters()) | |
if non_embedding: | |
n_params -= self.transformer.wte.weight.numel() | |
n_params -= self.transformer.wpe.weight.numel() | |
return n_params | |
def forward(self, idx, merge_context=False, past_kv=None, position_ids=None, use_cache=False): | |
device = idx.device | |
_, t = idx.size() | |
if past_kv is not None: | |
assert t == 1 | |
tok_emb = self.transformer.wte(idx) # token embeddings of shape (b, t, n_embd) | |
else: | |
if merge_context: | |
assert idx.shape[1] >= 256 + 256 + 1 | |
t = idx.shape[1] - 256 | |
else: | |
assert ( | |
t <= self.config.block_size | |
), f"Cannot forward sequence of length {t}, block size is only {self.config.block_size}" | |
# forward the GPT model itself | |
if merge_context: | |
tok_emb = torch.cat( | |
[ | |
self.transformer.wte(idx[:, :256]) + self.transformer.wte(idx[:, 256 : 256 + 256]), | |
self.transformer.wte(idx[:, 256 + 256 :]), | |
], | |
dim=1, | |
) | |
else: | |
tok_emb = self.transformer.wte(idx) # token embeddings of shape (b, t, n_embd) | |
if past_kv is None: | |
past_length = 0 | |
past_kv = tuple([None] * len(self.transformer.h)) | |
else: | |
past_length = past_kv[0][0].size(-2) | |
if position_ids is None: | |
position_ids = torch.arange(past_length, t + past_length, dtype=torch.long, device=device) | |
position_ids = position_ids.unsqueeze(0) # shape (1, t) | |
assert position_ids.shape == (1, t) | |
pos_emb = self.transformer.wpe(position_ids) # position embeddings of shape (1, t, n_embd) | |
x = self.transformer.drop(tok_emb + pos_emb) | |
new_kv = () if use_cache else None | |
for _, (block, past_layer_kv) in enumerate(zip(self.transformer.h, past_kv)): | |
x, kv = block(x, past_kv=past_layer_kv, use_cache=use_cache) | |
if use_cache: | |
new_kv = new_kv + (kv,) | |
x = self.transformer.ln_f(x) | |
# inference-time mini-optimization: only forward the lm_head on the very last position | |
logits = self.lm_head(x[:, [-1], :]) # note: using list [-1] to preserve the time dim | |
return (logits, new_kv) | |