Spaces:
Running
Running
import torch | |
from scipy.stats import betabinom | |
from torch import nn | |
from torch.nn import functional as F | |
from TTS.tts.layers.tacotron.common_layers import Linear | |
class LocationLayer(nn.Module): | |
"""Layers for Location Sensitive Attention | |
Args: | |
attention_dim (int): number of channels in the input tensor. | |
attention_n_filters (int, optional): number of filters in convolution. Defaults to 32. | |
attention_kernel_size (int, optional): kernel size of convolution filter. Defaults to 31. | |
""" | |
def __init__(self, attention_dim, attention_n_filters=32, attention_kernel_size=31): | |
super().__init__() | |
self.location_conv1d = nn.Conv1d( | |
in_channels=2, | |
out_channels=attention_n_filters, | |
kernel_size=attention_kernel_size, | |
stride=1, | |
padding=(attention_kernel_size - 1) // 2, | |
bias=False, | |
) | |
self.location_dense = Linear(attention_n_filters, attention_dim, bias=False, init_gain="tanh") | |
def forward(self, attention_cat): | |
""" | |
Shapes: | |
attention_cat: [B, 2, C] | |
""" | |
processed_attention = self.location_conv1d(attention_cat) | |
processed_attention = self.location_dense(processed_attention.transpose(1, 2)) | |
return processed_attention | |
class GravesAttention(nn.Module): | |
"""Graves Attention as is ref1 with updates from ref2. | |
ref1: https://arxiv.org/abs/1910.10288 | |
ref2: https://arxiv.org/pdf/1906.01083.pdf | |
Args: | |
query_dim (int): number of channels in query tensor. | |
K (int): number of Gaussian heads to be used for computing attention. | |
""" | |
COEF = 0.3989422917366028 # numpy.sqrt(1/(2*numpy.pi)) | |
def __init__(self, query_dim, K): | |
super().__init__() | |
self._mask_value = 1e-8 | |
self.K = K | |
# self.attention_alignment = 0.05 | |
self.eps = 1e-5 | |
self.J = None | |
self.N_a = nn.Sequential( | |
nn.Linear(query_dim, query_dim, bias=True), nn.ReLU(), nn.Linear(query_dim, 3 * K, bias=True) | |
) | |
self.attention_weights = None | |
self.mu_prev = None | |
self.init_layers() | |
def init_layers(self): | |
torch.nn.init.constant_(self.N_a[2].bias[(2 * self.K) : (3 * self.K)], 1.0) # bias mean | |
torch.nn.init.constant_(self.N_a[2].bias[self.K : (2 * self.K)], 10) # bias std | |
def init_states(self, inputs): | |
if self.J is None or inputs.shape[1] + 1 > self.J.shape[-1]: | |
self.J = torch.arange(0, inputs.shape[1] + 2.0).to(inputs.device) + 0.5 | |
self.attention_weights = torch.zeros(inputs.shape[0], inputs.shape[1]).to(inputs.device) | |
self.mu_prev = torch.zeros(inputs.shape[0], self.K).to(inputs.device) | |
# pylint: disable=R0201 | |
# pylint: disable=unused-argument | |
def preprocess_inputs(self, inputs): | |
return None | |
def forward(self, query, inputs, processed_inputs, mask): | |
""" | |
Shapes: | |
query: [B, C_attention_rnn] | |
inputs: [B, T_in, C_encoder] | |
processed_inputs: place_holder | |
mask: [B, T_in] | |
""" | |
gbk_t = self.N_a(query) | |
gbk_t = gbk_t.view(gbk_t.size(0), -1, self.K) | |
# attention model parameters | |
# each B x K | |
g_t = gbk_t[:, 0, :] | |
b_t = gbk_t[:, 1, :] | |
k_t = gbk_t[:, 2, :] | |
# dropout to decorrelate attention heads | |
g_t = torch.nn.functional.dropout(g_t, p=0.5, training=self.training) | |
# attention GMM parameters | |
sig_t = torch.nn.functional.softplus(b_t) + self.eps | |
mu_t = self.mu_prev + torch.nn.functional.softplus(k_t) | |
g_t = torch.softmax(g_t, dim=-1) + self.eps | |
j = self.J[: inputs.size(1) + 1] | |
# attention weights | |
phi_t = g_t.unsqueeze(-1) * (1 / (1 + torch.sigmoid((mu_t.unsqueeze(-1) - j) / sig_t.unsqueeze(-1)))) | |
# discritize attention weights | |
alpha_t = torch.sum(phi_t, 1) | |
alpha_t = alpha_t[:, 1:] - alpha_t[:, :-1] | |
alpha_t[alpha_t == 0] = 1e-8 | |
# apply masking | |
if mask is not None: | |
alpha_t.data.masked_fill_(~mask, self._mask_value) | |
context = torch.bmm(alpha_t.unsqueeze(1), inputs).squeeze(1) | |
self.attention_weights = alpha_t | |
self.mu_prev = mu_t | |
return context | |
class OriginalAttention(nn.Module): | |
"""Bahdanau Attention with various optional modifications. | |
- Location sensitive attnetion: https://arxiv.org/abs/1712.05884 | |
- Forward Attention: https://arxiv.org/abs/1807.06736 + state masking at inference | |
- Using sigmoid instead of softmax normalization | |
- Attention windowing at inference time | |
Note: | |
Location Sensitive Attention extends the additive attention mechanism | |
to use cumulative attention weights from previous decoder time steps with the current time step features. | |
Forward attention computes most probable monotonic alignment. The modified attention probabilities at each | |
timestep are computed recursively by the forward algorithm. | |
Transition agent in the forward attention explicitly gates the attention mechanism whether to move forward or | |
stay at each decoder timestep. | |
Attention windowing is a inductive prior that prevents the model from attending to previous and future timesteps | |
beyond a certain window. | |
Args: | |
query_dim (int): number of channels in the query tensor. | |
embedding_dim (int): number of channels in the vakue tensor. In general, the value tensor is the output of the encoder layer. | |
attention_dim (int): number of channels of the inner attention layers. | |
location_attention (bool): enable/disable location sensitive attention. | |
attention_location_n_filters (int): number of location attention filters. | |
attention_location_kernel_size (int): filter size of location attention convolution layer. | |
windowing (int): window size for attention windowing. if it is 5, for computing the attention, it only considers the time steps [(t-5), ..., (t+5)] of the input. | |
norm (str): normalization method applied to the attention weights. 'softmax' or 'sigmoid' | |
forward_attn (bool): enable/disable forward attention. | |
trans_agent (bool): enable/disable transition agent in the forward attention. | |
forward_attn_mask (int): enable/disable an explicit masking in forward attention. It is useful to set at especially inference time. | |
""" | |
# Pylint gets confused by PyTorch conventions here | |
# pylint: disable=attribute-defined-outside-init | |
def __init__( | |
self, | |
query_dim, | |
embedding_dim, | |
attention_dim, | |
location_attention, | |
attention_location_n_filters, | |
attention_location_kernel_size, | |
windowing, | |
norm, | |
forward_attn, | |
trans_agent, | |
forward_attn_mask, | |
): | |
super().__init__() | |
self.query_layer = Linear(query_dim, attention_dim, bias=False, init_gain="tanh") | |
self.inputs_layer = Linear(embedding_dim, attention_dim, bias=False, init_gain="tanh") | |
self.v = Linear(attention_dim, 1, bias=True) | |
if trans_agent: | |
self.ta = nn.Linear(query_dim + embedding_dim, 1, bias=True) | |
if location_attention: | |
self.location_layer = LocationLayer( | |
attention_dim, | |
attention_location_n_filters, | |
attention_location_kernel_size, | |
) | |
self._mask_value = -float("inf") | |
self.windowing = windowing | |
self.win_idx = None | |
self.norm = norm | |
self.forward_attn = forward_attn | |
self.trans_agent = trans_agent | |
self.forward_attn_mask = forward_attn_mask | |
self.location_attention = location_attention | |
def init_win_idx(self): | |
self.win_idx = -1 | |
self.win_back = 2 | |
self.win_front = 6 | |
def init_forward_attn(self, inputs): | |
B = inputs.shape[0] | |
T = inputs.shape[1] | |
self.alpha = torch.cat([torch.ones([B, 1]), torch.zeros([B, T])[:, :-1] + 1e-7], dim=1).to(inputs.device) | |
self.u = (0.5 * torch.ones([B, 1])).to(inputs.device) | |
def init_location_attention(self, inputs): | |
B = inputs.size(0) | |
T = inputs.size(1) | |
self.attention_weights_cum = torch.zeros([B, T], device=inputs.device) | |
def init_states(self, inputs): | |
B = inputs.size(0) | |
T = inputs.size(1) | |
self.attention_weights = torch.zeros([B, T], device=inputs.device) | |
if self.location_attention: | |
self.init_location_attention(inputs) | |
if self.forward_attn: | |
self.init_forward_attn(inputs) | |
if self.windowing: | |
self.init_win_idx() | |
def preprocess_inputs(self, inputs): | |
return self.inputs_layer(inputs) | |
def update_location_attention(self, alignments): | |
self.attention_weights_cum += alignments | |
def get_location_attention(self, query, processed_inputs): | |
attention_cat = torch.cat((self.attention_weights.unsqueeze(1), self.attention_weights_cum.unsqueeze(1)), dim=1) | |
processed_query = self.query_layer(query.unsqueeze(1)) | |
processed_attention_weights = self.location_layer(attention_cat) | |
energies = self.v(torch.tanh(processed_query + processed_attention_weights + processed_inputs)) | |
energies = energies.squeeze(-1) | |
return energies, processed_query | |
def get_attention(self, query, processed_inputs): | |
processed_query = self.query_layer(query.unsqueeze(1)) | |
energies = self.v(torch.tanh(processed_query + processed_inputs)) | |
energies = energies.squeeze(-1) | |
return energies, processed_query | |
def apply_windowing(self, attention, inputs): | |
back_win = self.win_idx - self.win_back | |
front_win = self.win_idx + self.win_front | |
if back_win > 0: | |
attention[:, :back_win] = -float("inf") | |
if front_win < inputs.shape[1]: | |
attention[:, front_win:] = -float("inf") | |
# this is a trick to solve a special problem. | |
# but it does not hurt. | |
if self.win_idx == -1: | |
attention[:, 0] = attention.max() | |
# Update the window | |
self.win_idx = torch.argmax(attention, 1).long()[0].item() | |
return attention | |
def apply_forward_attention(self, alignment): | |
# forward attention | |
fwd_shifted_alpha = F.pad(self.alpha[:, :-1].clone().to(alignment.device), (1, 0, 0, 0)) | |
# compute transition potentials | |
alpha = ((1 - self.u) * self.alpha + self.u * fwd_shifted_alpha + 1e-8) * alignment | |
# force incremental alignment | |
if not self.training and self.forward_attn_mask: | |
_, n = fwd_shifted_alpha.max(1) | |
val, _ = alpha.max(1) | |
for b in range(alignment.shape[0]): | |
alpha[b, n[b] + 3 :] = 0 | |
alpha[b, : (n[b] - 1)] = 0 # ignore all previous states to prevent repetition. | |
alpha[b, (n[b] - 2)] = 0.01 * val[b] # smoothing factor for the prev step | |
# renormalize attention weights | |
alpha = alpha / alpha.sum(dim=1, keepdim=True) | |
return alpha | |
def forward(self, query, inputs, processed_inputs, mask): | |
""" | |
shapes: | |
query: [B, C_attn_rnn] | |
inputs: [B, T_en, D_en] | |
processed_inputs: [B, T_en, D_attn] | |
mask: [B, T_en] | |
""" | |
if self.location_attention: | |
attention, _ = self.get_location_attention(query, processed_inputs) | |
else: | |
attention, _ = self.get_attention(query, processed_inputs) | |
# apply masking | |
if mask is not None: | |
attention.data.masked_fill_(~mask, self._mask_value) | |
# apply windowing - only in eval mode | |
if not self.training and self.windowing: | |
attention = self.apply_windowing(attention, inputs) | |
# normalize attention values | |
if self.norm == "softmax": | |
alignment = torch.softmax(attention, dim=-1) | |
elif self.norm == "sigmoid": | |
alignment = torch.sigmoid(attention) / torch.sigmoid(attention).sum(dim=1, keepdim=True) | |
else: | |
raise ValueError("Unknown value for attention norm type") | |
if self.location_attention: | |
self.update_location_attention(alignment) | |
# apply forward attention if enabled | |
if self.forward_attn: | |
alignment = self.apply_forward_attention(alignment) | |
self.alpha = alignment | |
context = torch.bmm(alignment.unsqueeze(1), inputs) | |
context = context.squeeze(1) | |
self.attention_weights = alignment | |
# compute transition agent | |
if self.forward_attn and self.trans_agent: | |
ta_input = torch.cat([context, query.squeeze(1)], dim=-1) | |
self.u = torch.sigmoid(self.ta(ta_input)) | |
return context | |
class MonotonicDynamicConvolutionAttention(nn.Module): | |
"""Dynamic convolution attention from | |
https://arxiv.org/pdf/1910.10288.pdf | |
query -> linear -> tanh -> linear ->| | |
| mask values | |
v | | | |
atten_w(t-1) -|-> conv1d_dynamic -> linear -|-> tanh -> + -> softmax -> * -> * -> context | |
|-> conv1d_static -> linear -| | | |
|-> conv1d_prior -> log ----------------| | |
query: attention rnn output. | |
Note: | |
Dynamic convolution attention is an alternation of the location senstive attention with | |
dynamically computed convolution filters from the previous attention scores and a set of | |
constraints to keep the attention alignment diagonal. | |
DCA is sensitive to mixed precision training and might cause instable training. | |
Args: | |
query_dim (int): number of channels in the query tensor. | |
embedding_dim (int): number of channels in the value tensor. | |
static_filter_dim (int): number of channels in the convolution layer computing the static filters. | |
static_kernel_size (int): kernel size for the convolution layer computing the static filters. | |
dynamic_filter_dim (int): number of channels in the convolution layer computing the dynamic filters. | |
dynamic_kernel_size (int): kernel size for the convolution layer computing the dynamic filters. | |
prior_filter_len (int, optional): [description]. Defaults to 11 from the paper. | |
alpha (float, optional): [description]. Defaults to 0.1 from the paper. | |
beta (float, optional): [description]. Defaults to 0.9 from the paper. | |
""" | |
def __init__( | |
self, | |
query_dim, | |
embedding_dim, # pylint: disable=unused-argument | |
attention_dim, | |
static_filter_dim, | |
static_kernel_size, | |
dynamic_filter_dim, | |
dynamic_kernel_size, | |
prior_filter_len=11, | |
alpha=0.1, | |
beta=0.9, | |
): | |
super().__init__() | |
self._mask_value = 1e-8 | |
self.dynamic_filter_dim = dynamic_filter_dim | |
self.dynamic_kernel_size = dynamic_kernel_size | |
self.prior_filter_len = prior_filter_len | |
self.attention_weights = None | |
# setup key and query layers | |
self.query_layer = nn.Linear(query_dim, attention_dim) | |
self.key_layer = nn.Linear(attention_dim, dynamic_filter_dim * dynamic_kernel_size, bias=False) | |
self.static_filter_conv = nn.Conv1d( | |
1, | |
static_filter_dim, | |
static_kernel_size, | |
padding=(static_kernel_size - 1) // 2, | |
bias=False, | |
) | |
self.static_filter_layer = nn.Linear(static_filter_dim, attention_dim, bias=False) | |
self.dynamic_filter_layer = nn.Linear(dynamic_filter_dim, attention_dim) | |
self.v = nn.Linear(attention_dim, 1, bias=False) | |
prior = betabinom.pmf(range(prior_filter_len), prior_filter_len - 1, alpha, beta) | |
self.register_buffer("prior", torch.FloatTensor(prior).flip(0)) | |
# pylint: disable=unused-argument | |
def forward(self, query, inputs, processed_inputs, mask): | |
""" | |
query: [B, C_attn_rnn] | |
inputs: [B, T_en, D_en] | |
processed_inputs: place holder. | |
mask: [B, T_en] | |
""" | |
# compute prior filters | |
prior_filter = F.conv1d( | |
F.pad(self.attention_weights.unsqueeze(1), (self.prior_filter_len - 1, 0)), self.prior.view(1, 1, -1) | |
) | |
prior_filter = torch.log(prior_filter.clamp_min_(1e-6)).squeeze(1) | |
G = self.key_layer(torch.tanh(self.query_layer(query))) | |
# compute dynamic filters | |
dynamic_filter = F.conv1d( | |
self.attention_weights.unsqueeze(0), | |
G.view(-1, 1, self.dynamic_kernel_size), | |
padding=(self.dynamic_kernel_size - 1) // 2, | |
groups=query.size(0), | |
) | |
dynamic_filter = dynamic_filter.view(query.size(0), self.dynamic_filter_dim, -1).transpose(1, 2) | |
# compute static filters | |
static_filter = self.static_filter_conv(self.attention_weights.unsqueeze(1)).transpose(1, 2) | |
alignment = ( | |
self.v( | |
torch.tanh(self.static_filter_layer(static_filter) + self.dynamic_filter_layer(dynamic_filter)) | |
).squeeze(-1) | |
+ prior_filter | |
) | |
# compute attention weights | |
attention_weights = F.softmax(alignment, dim=-1) | |
# apply masking | |
if mask is not None: | |
attention_weights.data.masked_fill_(~mask, self._mask_value) | |
self.attention_weights = attention_weights | |
# compute context | |
context = torch.bmm(attention_weights.unsqueeze(1), inputs).squeeze(1) | |
return context | |
def preprocess_inputs(self, inputs): # pylint: disable=no-self-use | |
return None | |
def init_states(self, inputs): | |
B = inputs.size(0) | |
T = inputs.size(1) | |
self.attention_weights = torch.zeros([B, T], device=inputs.device) | |
self.attention_weights[:, 0] = 1.0 | |
def init_attn( | |
attn_type, | |
query_dim, | |
embedding_dim, | |
attention_dim, | |
location_attention, | |
attention_location_n_filters, | |
attention_location_kernel_size, | |
windowing, | |
norm, | |
forward_attn, | |
trans_agent, | |
forward_attn_mask, | |
attn_K, | |
): | |
if attn_type == "original": | |
return OriginalAttention( | |
query_dim, | |
embedding_dim, | |
attention_dim, | |
location_attention, | |
attention_location_n_filters, | |
attention_location_kernel_size, | |
windowing, | |
norm, | |
forward_attn, | |
trans_agent, | |
forward_attn_mask, | |
) | |
if attn_type == "graves": | |
return GravesAttention(query_dim, attn_K) | |
if attn_type == "dynamic_convolution": | |
return MonotonicDynamicConvolutionAttention( | |
query_dim, | |
embedding_dim, | |
attention_dim, | |
static_filter_dim=8, | |
static_kernel_size=21, | |
dynamic_filter_dim=8, | |
dynamic_kernel_size=21, | |
prior_filter_len=11, | |
alpha=0.1, | |
beta=0.9, | |
) | |
raise RuntimeError(f" [!] Given Attention Type '{attn_type}' is not exist.") | |