Spaces:
Running
Running
import torch | |
from torch import nn | |
from torch.distributions.multivariate_normal import MultivariateNormal as MVN | |
from torch.nn import functional as F | |
class CapacitronVAE(nn.Module): | |
"""Effective Use of Variational Embedding Capacity for prosody transfer. | |
See https://arxiv.org/abs/1906.03402""" | |
def __init__( | |
self, | |
num_mel, | |
capacitron_VAE_embedding_dim, | |
encoder_output_dim=256, | |
reference_encoder_out_dim=128, | |
speaker_embedding_dim=None, | |
text_summary_embedding_dim=None, | |
): | |
super().__init__() | |
# Init distributions | |
self.prior_distribution = MVN( | |
torch.zeros(capacitron_VAE_embedding_dim), torch.eye(capacitron_VAE_embedding_dim) | |
) | |
self.approximate_posterior_distribution = None | |
# define output ReferenceEncoder dim to the capacitron_VAE_embedding_dim | |
self.encoder = ReferenceEncoder(num_mel, out_dim=reference_encoder_out_dim) | |
# Init beta, the lagrange-like term for the KL distribution | |
self.beta = torch.nn.Parameter(torch.log(torch.exp(torch.Tensor([1.0])) - 1), requires_grad=True) | |
mlp_input_dimension = reference_encoder_out_dim | |
if text_summary_embedding_dim is not None: | |
self.text_summary_net = TextSummary(text_summary_embedding_dim, encoder_output_dim=encoder_output_dim) | |
mlp_input_dimension += text_summary_embedding_dim | |
if speaker_embedding_dim is not None: | |
# TODO: Test a multispeaker model! | |
mlp_input_dimension += speaker_embedding_dim | |
self.post_encoder_mlp = PostEncoderMLP(mlp_input_dimension, capacitron_VAE_embedding_dim) | |
def forward(self, reference_mel_info=None, text_info=None, speaker_embedding=None): | |
# Use reference | |
if reference_mel_info is not None: | |
reference_mels = reference_mel_info[0] # [batch_size, num_frames, num_mels] | |
mel_lengths = reference_mel_info[1] # [batch_size] | |
enc_out = self.encoder(reference_mels, mel_lengths) | |
# concat speaker_embedding and/or text summary embedding | |
if text_info is not None: | |
text_inputs = text_info[0] # [batch_size, num_characters, num_embedding] | |
input_lengths = text_info[1] | |
text_summary_out = self.text_summary_net(text_inputs, input_lengths).to(reference_mels.device) | |
enc_out = torch.cat([enc_out, text_summary_out], dim=-1) | |
if speaker_embedding is not None: | |
speaker_embedding = torch.squeeze(speaker_embedding) | |
enc_out = torch.cat([enc_out, speaker_embedding], dim=-1) | |
# Feed the output of the ref encoder and information about text/speaker into | |
# an MLP to produce the parameteres for the approximate poterior distributions | |
mu, sigma = self.post_encoder_mlp(enc_out) | |
# convert to cpu because prior_distribution was created on cpu | |
mu = mu.cpu() | |
sigma = sigma.cpu() | |
# Sample from the posterior: z ~ q(z|x) | |
self.approximate_posterior_distribution = MVN(mu, torch.diag_embed(sigma)) | |
VAE_embedding = self.approximate_posterior_distribution.rsample() | |
# Infer from the model, bypasses encoding | |
else: | |
# Sample from the prior: z ~ p(z) | |
VAE_embedding = self.prior_distribution.sample().unsqueeze(0) | |
# reshape to [batch_size, 1, capacitron_VAE_embedding_dim] | |
return VAE_embedding.unsqueeze(1), self.approximate_posterior_distribution, self.prior_distribution, self.beta | |
class ReferenceEncoder(nn.Module): | |
"""NN module creating a fixed size prosody embedding from a spectrogram. | |
inputs: mel spectrograms [batch_size, num_spec_frames, num_mel] | |
outputs: [batch_size, embedding_dim] | |
""" | |
def __init__(self, num_mel, out_dim): | |
super().__init__() | |
self.num_mel = num_mel | |
filters = [1] + [32, 32, 64, 64, 128, 128] | |
num_layers = len(filters) - 1 | |
convs = [ | |
nn.Conv2d( | |
in_channels=filters[i], out_channels=filters[i + 1], kernel_size=(3, 3), stride=(2, 2), padding=(2, 2) | |
) | |
for i in range(num_layers) | |
] | |
self.convs = nn.ModuleList(convs) | |
self.training = False | |
self.bns = nn.ModuleList([nn.BatchNorm2d(num_features=filter_size) for filter_size in filters[1:]]) | |
post_conv_height = self.calculate_post_conv_height(num_mel, 3, 2, 2, num_layers) | |
self.recurrence = nn.LSTM( | |
input_size=filters[-1] * post_conv_height, hidden_size=out_dim, batch_first=True, bidirectional=False | |
) | |
def forward(self, inputs, input_lengths): | |
batch_size = inputs.size(0) | |
x = inputs.view(batch_size, 1, -1, self.num_mel) # [batch_size, num_channels==1, num_frames, num_mel] | |
valid_lengths = input_lengths.float() # [batch_size] | |
for conv, bn in zip(self.convs, self.bns): | |
x = conv(x) | |
x = bn(x) | |
x = F.relu(x) | |
# Create the post conv width mask based on the valid lengths of the output of the convolution. | |
# The valid lengths for the output of a convolution on varying length inputs is | |
# ceil(input_length/stride) + 1 for stride=3 and padding=2 | |
# For example (kernel_size=3, stride=2, padding=2): | |
# 0 0 x x x x x 0 0 -> Input = 5, 0 is zero padding, x is valid values coming from padding=2 in conv2d | |
# _____ | |
# x _____ | |
# x _____ | |
# x ____ | |
# x | |
# x x x x -> Output valid length = 4 | |
# Since every example in te batch is zero padded and therefore have separate valid_lengths, | |
# we need to mask off all the values AFTER the valid length for each example in the batch. | |
# Otherwise, the convolutions create noise and a lot of not real information | |
valid_lengths = (valid_lengths / 2).float() | |
valid_lengths = torch.ceil(valid_lengths).to(dtype=torch.int64) + 1 # 2 is stride -- size: [batch_size] | |
post_conv_max_width = x.size(2) | |
mask = torch.arange(post_conv_max_width).to(inputs.device).expand( | |
len(valid_lengths), post_conv_max_width | |
) < valid_lengths.unsqueeze(1) | |
mask = mask.expand(1, 1, -1, -1).transpose(2, 0).transpose(-1, 2) # [batch_size, 1, post_conv_max_width, 1] | |
x = x * mask | |
x = x.transpose(1, 2) | |
# x: 4D tensor [batch_size, post_conv_width, | |
# num_channels==128, post_conv_height] | |
post_conv_width = x.size(1) | |
x = x.contiguous().view(batch_size, post_conv_width, -1) | |
# x: 3D tensor [batch_size, post_conv_width, | |
# num_channels*post_conv_height] | |
# Routine for fetching the last valid output of a dynamic LSTM with varying input lengths and padding | |
post_conv_input_lengths = valid_lengths | |
packed_seqs = nn.utils.rnn.pack_padded_sequence( | |
x, post_conv_input_lengths.tolist(), batch_first=True, enforce_sorted=False | |
) # dynamic rnn sequence padding | |
self.recurrence.flatten_parameters() | |
_, (ht, _) = self.recurrence(packed_seqs) | |
last_output = ht[-1] | |
return last_output.to(inputs.device) # [B, 128] | |
def calculate_post_conv_height(height, kernel_size, stride, pad, n_convs): | |
"""Height of spec after n convolutions with fixed kernel/stride/pad.""" | |
for _ in range(n_convs): | |
height = (height - kernel_size + 2 * pad) // stride + 1 | |
return height | |
class TextSummary(nn.Module): | |
def __init__(self, embedding_dim, encoder_output_dim): | |
super().__init__() | |
self.lstm = nn.LSTM( | |
encoder_output_dim, # text embedding dimension from the text encoder | |
embedding_dim, # fixed length output summary the lstm creates from the input | |
batch_first=True, | |
bidirectional=False, | |
) | |
def forward(self, inputs, input_lengths): | |
# Routine for fetching the last valid output of a dynamic LSTM with varying input lengths and padding | |
packed_seqs = nn.utils.rnn.pack_padded_sequence( | |
inputs, input_lengths.tolist(), batch_first=True, enforce_sorted=False | |
) # dynamic rnn sequence padding | |
self.lstm.flatten_parameters() | |
_, (ht, _) = self.lstm(packed_seqs) | |
last_output = ht[-1] | |
return last_output | |
class PostEncoderMLP(nn.Module): | |
def __init__(self, input_size, hidden_size): | |
super().__init__() | |
self.hidden_size = hidden_size | |
modules = [ | |
nn.Linear(input_size, hidden_size), # Hidden Layer | |
nn.Tanh(), | |
nn.Linear(hidden_size, hidden_size * 2), | |
] # Output layer twice the size for mean and variance | |
self.net = nn.Sequential(*modules) | |
self.softplus = nn.Softplus() | |
def forward(self, _input): | |
mlp_output = self.net(_input) | |
# The mean parameter is unconstrained | |
mu = mlp_output[:, : self.hidden_size] | |
# The standard deviation must be positive. Parameterise with a softplus | |
sigma = self.softplus(mlp_output[:, self.hidden_size :]) | |
return mu, sigma | |