clonar-voz / TTS /tts /utils /managers.py
Shadhil's picture
voice-clone with single audio sample input
9b2107c
raw
history blame
12.9 kB
import json
import random
from typing import Any, Dict, List, Tuple, Union
import fsspec
import numpy as np
import torch
from TTS.config import load_config
from TTS.encoder.utils.generic_utils import setup_encoder_model
from TTS.utils.audio import AudioProcessor
def load_file(path: str):
if path.endswith(".json"):
with fsspec.open(path, "r") as f:
return json.load(f)
elif path.endswith(".pth"):
with fsspec.open(path, "rb") as f:
return torch.load(f, map_location="cpu")
else:
raise ValueError("Unsupported file type")
def save_file(obj: Any, path: str):
if path.endswith(".json"):
with fsspec.open(path, "w") as f:
json.dump(obj, f, indent=4)
elif path.endswith(".pth"):
with fsspec.open(path, "wb") as f:
torch.save(obj, f)
else:
raise ValueError("Unsupported file type")
class BaseIDManager:
"""Base `ID` Manager class. Every new `ID` manager must inherit this.
It defines common `ID` manager specific functions.
"""
def __init__(self, id_file_path: str = ""):
self.name_to_id = {}
if id_file_path:
self.load_ids_from_file(id_file_path)
@staticmethod
def _load_json(json_file_path: str) -> Dict:
with fsspec.open(json_file_path, "r") as f:
return json.load(f)
@staticmethod
def _save_json(json_file_path: str, data: dict) -> None:
with fsspec.open(json_file_path, "w") as f:
json.dump(data, f, indent=4)
def set_ids_from_data(self, items: List, parse_key: str) -> None:
"""Set IDs from data samples.
Args:
items (List): Data sampled returned by `load_tts_samples()`.
"""
self.name_to_id = self.parse_ids_from_data(items, parse_key=parse_key)
def load_ids_from_file(self, file_path: str) -> None:
"""Set IDs from a file.
Args:
file_path (str): Path to the file.
"""
self.name_to_id = load_file(file_path)
def save_ids_to_file(self, file_path: str) -> None:
"""Save IDs to a json file.
Args:
file_path (str): Path to the output file.
"""
save_file(self.name_to_id, file_path)
def get_random_id(self) -> Any:
"""Get a random embedding.
Args:
Returns:
np.ndarray: embedding.
"""
if self.name_to_id:
return self.name_to_id[random.choices(list(self.name_to_id.keys()))[0]]
return None
@staticmethod
def parse_ids_from_data(items: List, parse_key: str) -> Tuple[Dict]:
"""Parse IDs from data samples retured by `load_tts_samples()`.
Args:
items (list): Data sampled returned by `load_tts_samples()`.
parse_key (str): The key to being used to parse the data.
Returns:
Tuple[Dict]: speaker IDs.
"""
classes = sorted({item[parse_key] for item in items})
ids = {name: i for i, name in enumerate(classes)}
return ids
class EmbeddingManager(BaseIDManager):
"""Base `Embedding` Manager class. Every new `Embedding` manager must inherit this.
It defines common `Embedding` manager specific functions.
It expects embeddings files in the following format:
::
{
'audio_file_key':{
'name': 'category_name',
'embedding'[<embedding_values>]
},
...
}
`audio_file_key` is a unique key to the audio file in the dataset. It can be the path to the file or any other unique key.
`embedding` is the embedding vector of the audio file.
`name` can be name of the speaker of the audio file.
"""
def __init__(
self,
embedding_file_path: Union[str, List[str]] = "",
id_file_path: str = "",
encoder_model_path: str = "",
encoder_config_path: str = "",
use_cuda: bool = False,
):
super().__init__(id_file_path=id_file_path)
self.embeddings = {}
self.embeddings_by_names = {}
self.clip_ids = []
self.encoder = None
self.encoder_ap = None
self.use_cuda = use_cuda
if embedding_file_path:
if isinstance(embedding_file_path, list):
self.load_embeddings_from_list_of_files(embedding_file_path)
else:
self.load_embeddings_from_file(embedding_file_path)
if encoder_model_path and encoder_config_path:
self.init_encoder(encoder_model_path, encoder_config_path, use_cuda)
@property
def num_embeddings(self):
"""Get number of embeddings."""
return len(self.embeddings)
@property
def num_names(self):
"""Get number of embeddings."""
return len(self.embeddings_by_names)
@property
def embedding_dim(self):
"""Dimensionality of embeddings. If embeddings are not loaded, returns zero."""
if self.embeddings:
return len(self.embeddings[list(self.embeddings.keys())[0]]["embedding"])
return 0
@property
def embedding_names(self):
"""Get embedding names."""
return list(self.embeddings_by_names.keys())
def save_embeddings_to_file(self, file_path: str) -> None:
"""Save embeddings to a json file.
Args:
file_path (str): Path to the output file.
"""
save_file(self.embeddings, file_path)
@staticmethod
def read_embeddings_from_file(file_path: str):
"""Load embeddings from a json file.
Args:
file_path (str): Path to the file.
"""
embeddings = load_file(file_path)
speakers = sorted({x["name"] for x in embeddings.values()})
name_to_id = {name: i for i, name in enumerate(speakers)}
clip_ids = list(set(sorted(clip_name for clip_name in embeddings.keys())))
# cache embeddings_by_names for fast inference using a bigger speakers.json
embeddings_by_names = {}
for x in embeddings.values():
if x["name"] not in embeddings_by_names.keys():
embeddings_by_names[x["name"]] = [x["embedding"]]
else:
embeddings_by_names[x["name"]].append(x["embedding"])
return name_to_id, clip_ids, embeddings, embeddings_by_names
def load_embeddings_from_file(self, file_path: str) -> None:
"""Load embeddings from a json file.
Args:
file_path (str): Path to the target json file.
"""
self.name_to_id, self.clip_ids, self.embeddings, self.embeddings_by_names = self.read_embeddings_from_file(
file_path
)
def load_embeddings_from_list_of_files(self, file_paths: List[str]) -> None:
"""Load embeddings from a list of json files and don't allow duplicate keys.
Args:
file_paths (List[str]): List of paths to the target json files.
"""
self.name_to_id = {}
self.clip_ids = []
self.embeddings_by_names = {}
self.embeddings = {}
for file_path in file_paths:
ids, clip_ids, embeddings, embeddings_by_names = self.read_embeddings_from_file(file_path)
# check colliding keys
duplicates = set(self.embeddings.keys()) & set(embeddings.keys())
if duplicates:
raise ValueError(f" [!] Duplicate embedding names <{duplicates}> in {file_path}")
# store values
self.name_to_id.update(ids)
self.clip_ids.extend(clip_ids)
self.embeddings_by_names.update(embeddings_by_names)
self.embeddings.update(embeddings)
# reset name_to_id to get the right speaker ids
self.name_to_id = {name: i for i, name in enumerate(self.name_to_id)}
def get_embedding_by_clip(self, clip_idx: str) -> List:
"""Get embedding by clip ID.
Args:
clip_idx (str): Target clip ID.
Returns:
List: embedding as a list.
"""
return self.embeddings[clip_idx]["embedding"]
def get_embeddings_by_name(self, idx: str) -> List[List]:
"""Get all embeddings of a speaker.
Args:
idx (str): Target name.
Returns:
List[List]: all the embeddings of the given speaker.
"""
return self.embeddings_by_names[idx]
def get_embeddings_by_names(self) -> Dict:
"""Get all embeddings by names.
Returns:
Dict: all the embeddings of each speaker.
"""
embeddings_by_names = {}
for x in self.embeddings.values():
if x["name"] not in embeddings_by_names.keys():
embeddings_by_names[x["name"]] = [x["embedding"]]
else:
embeddings_by_names[x["name"]].append(x["embedding"])
return embeddings_by_names
def get_mean_embedding(self, idx: str, num_samples: int = None, randomize: bool = False) -> np.ndarray:
"""Get mean embedding of a idx.
Args:
idx (str): Target name.
num_samples (int, optional): Number of samples to be averaged. Defaults to None.
randomize (bool, optional): Pick random `num_samples` of embeddings. Defaults to False.
Returns:
np.ndarray: Mean embedding.
"""
embeddings = self.get_embeddings_by_name(idx)
if num_samples is None:
embeddings = np.stack(embeddings).mean(0)
else:
assert len(embeddings) >= num_samples, f" [!] {idx} has number of samples < {num_samples}"
if randomize:
embeddings = np.stack(random.choices(embeddings, k=num_samples)).mean(0)
else:
embeddings = np.stack(embeddings[:num_samples]).mean(0)
return embeddings
def get_random_embedding(self) -> Any:
"""Get a random embedding.
Args:
Returns:
np.ndarray: embedding.
"""
if self.embeddings:
return self.embeddings[random.choices(list(self.embeddings.keys()))[0]]["embedding"]
return None
def get_clips(self) -> List:
return sorted(self.embeddings.keys())
def init_encoder(self, model_path: str, config_path: str, use_cuda=False) -> None:
"""Initialize a speaker encoder model.
Args:
model_path (str): Model file path.
config_path (str): Model config file path.
use_cuda (bool, optional): Use CUDA. Defaults to False.
"""
self.use_cuda = use_cuda
self.encoder_config = load_config(config_path)
self.encoder = setup_encoder_model(self.encoder_config)
self.encoder_criterion = self.encoder.load_checkpoint(
self.encoder_config, model_path, eval=True, use_cuda=use_cuda, cache=True
)
self.encoder_ap = AudioProcessor(**self.encoder_config.audio)
def compute_embedding_from_clip(self, wav_file: Union[str, List[str]]) -> list:
"""Compute a embedding from a given audio file.
Args:
wav_file (Union[str, List[str]]): Target file path.
Returns:
list: Computed embedding.
"""
def _compute(wav_file: str):
waveform = self.encoder_ap.load_wav(wav_file, sr=self.encoder_ap.sample_rate)
if not self.encoder_config.model_params.get("use_torch_spec", False):
m_input = self.encoder_ap.melspectrogram(waveform)
m_input = torch.from_numpy(m_input)
else:
m_input = torch.from_numpy(waveform)
if self.use_cuda:
m_input = m_input.cuda()
m_input = m_input.unsqueeze(0)
embedding = self.encoder.compute_embedding(m_input)
return embedding
if isinstance(wav_file, list):
# compute the mean embedding
embeddings = None
for wf in wav_file:
embedding = _compute(wf)
if embeddings is None:
embeddings = embedding
else:
embeddings += embedding
return (embeddings / len(wav_file))[0].tolist()
embedding = _compute(wav_file)
return embedding[0].tolist()
def compute_embeddings(self, feats: Union[torch.Tensor, np.ndarray]) -> List:
"""Compute embedding from features.
Args:
feats (Union[torch.Tensor, np.ndarray]): Input features.
Returns:
List: computed embedding.
"""
if isinstance(feats, np.ndarray):
feats = torch.from_numpy(feats)
if feats.ndim == 2:
feats = feats.unsqueeze(0)
if self.use_cuda:
feats = feats.cuda()
return self.encoder.compute_embedding(feats)