Spaces:
Running
Running
import numpy as np | |
import torch | |
import torch.nn.functional as F | |
from scipy import signal as sig | |
# adapted from | |
# https://github.com/kan-bayashi/ParallelWaveGAN/tree/master/parallel_wavegan | |
class PQMF(torch.nn.Module): | |
def __init__(self, N=4, taps=62, cutoff=0.15, beta=9.0): | |
super().__init__() | |
self.N = N | |
self.taps = taps | |
self.cutoff = cutoff | |
self.beta = beta | |
QMF = sig.firwin(taps + 1, cutoff, window=("kaiser", beta)) | |
H = np.zeros((N, len(QMF))) | |
G = np.zeros((N, len(QMF))) | |
for k in range(N): | |
constant_factor = ( | |
(2 * k + 1) * (np.pi / (2 * N)) * (np.arange(taps + 1) - ((taps - 1) / 2)) | |
) # TODO: (taps - 1) -> taps | |
phase = (-1) ** k * np.pi / 4 | |
H[k] = 2 * QMF * np.cos(constant_factor + phase) | |
G[k] = 2 * QMF * np.cos(constant_factor - phase) | |
H = torch.from_numpy(H[:, None, :]).float() | |
G = torch.from_numpy(G[None, :, :]).float() | |
self.register_buffer("H", H) | |
self.register_buffer("G", G) | |
updown_filter = torch.zeros((N, N, N)).float() | |
for k in range(N): | |
updown_filter[k, k, 0] = 1.0 | |
self.register_buffer("updown_filter", updown_filter) | |
self.N = N | |
self.pad_fn = torch.nn.ConstantPad1d(taps // 2, 0.0) | |
def forward(self, x): | |
return self.analysis(x) | |
def analysis(self, x): | |
return F.conv1d(x, self.H, padding=self.taps // 2, stride=self.N) | |
def synthesis(self, x): | |
x = F.conv_transpose1d(x, self.updown_filter * self.N, stride=self.N) | |
x = F.conv1d(x, self.G, padding=self.taps // 2) | |
return x | |