Spaces:
Running
Running
import numpy as np | |
from torch import nn | |
from torch.nn.utils.parametrizations import weight_norm | |
class MelganDiscriminator(nn.Module): | |
def __init__( | |
self, | |
in_channels=1, | |
out_channels=1, | |
kernel_sizes=(5, 3), | |
base_channels=16, | |
max_channels=1024, | |
downsample_factors=(4, 4, 4, 4), | |
groups_denominator=4, | |
): | |
super().__init__() | |
self.layers = nn.ModuleList() | |
layer_kernel_size = np.prod(kernel_sizes) | |
layer_padding = (layer_kernel_size - 1) // 2 | |
# initial layer | |
self.layers += [ | |
nn.Sequential( | |
nn.ReflectionPad1d(layer_padding), | |
weight_norm(nn.Conv1d(in_channels, base_channels, layer_kernel_size, stride=1)), | |
nn.LeakyReLU(0.2, inplace=True), | |
) | |
] | |
# downsampling layers | |
layer_in_channels = base_channels | |
for downsample_factor in downsample_factors: | |
layer_out_channels = min(layer_in_channels * downsample_factor, max_channels) | |
layer_kernel_size = downsample_factor * 10 + 1 | |
layer_padding = (layer_kernel_size - 1) // 2 | |
layer_groups = layer_in_channels // groups_denominator | |
self.layers += [ | |
nn.Sequential( | |
weight_norm( | |
nn.Conv1d( | |
layer_in_channels, | |
layer_out_channels, | |
kernel_size=layer_kernel_size, | |
stride=downsample_factor, | |
padding=layer_padding, | |
groups=layer_groups, | |
) | |
), | |
nn.LeakyReLU(0.2, inplace=True), | |
) | |
] | |
layer_in_channels = layer_out_channels | |
# last 2 layers | |
layer_padding1 = (kernel_sizes[0] - 1) // 2 | |
layer_padding2 = (kernel_sizes[1] - 1) // 2 | |
self.layers += [ | |
nn.Sequential( | |
weight_norm( | |
nn.Conv1d( | |
layer_out_channels, | |
layer_out_channels, | |
kernel_size=kernel_sizes[0], | |
stride=1, | |
padding=layer_padding1, | |
) | |
), | |
nn.LeakyReLU(0.2, inplace=True), | |
), | |
weight_norm( | |
nn.Conv1d( | |
layer_out_channels, out_channels, kernel_size=kernel_sizes[1], stride=1, padding=layer_padding2 | |
) | |
), | |
] | |
def forward(self, x): | |
feats = [] | |
for layer in self.layers: | |
x = layer(x) | |
feats.append(x) | |
return x, feats | |