Spaces:
Running
Running
# ported from: Originally ported from: https://github.com/neonbjb/tortoise-tts | |
import math | |
import torch | |
from torch import nn | |
from torch.nn import functional as F | |
class GroupNorm32(nn.GroupNorm): | |
def forward(self, x): | |
return super().forward(x.float()).type(x.dtype) | |
def conv_nd(dims, *args, **kwargs): | |
if dims == 1: | |
return nn.Conv1d(*args, **kwargs) | |
elif dims == 2: | |
return nn.Conv2d(*args, **kwargs) | |
elif dims == 3: | |
return nn.Conv3d(*args, **kwargs) | |
raise ValueError(f"unsupported dimensions: {dims}") | |
def normalization(channels): | |
groups = 32 | |
if channels <= 16: | |
groups = 8 | |
elif channels <= 64: | |
groups = 16 | |
while channels % groups != 0: | |
groups = int(groups / 2) | |
assert groups > 2 | |
return GroupNorm32(groups, channels) | |
def zero_module(module): | |
for p in module.parameters(): | |
p.detach().zero_() | |
return module | |
class QKVAttention(nn.Module): | |
def __init__(self, n_heads): | |
super().__init__() | |
self.n_heads = n_heads | |
def forward(self, qkv, mask=None, qk_bias=0): | |
""" | |
Apply QKV attention. | |
:param qkv: an [N x (H * 3 * C) x T] tensor of Qs, Ks, and Vs. | |
:return: an [N x (H * C) x T] tensor after attention. | |
""" | |
bs, width, length = qkv.shape | |
assert width % (3 * self.n_heads) == 0 | |
ch = width // (3 * self.n_heads) | |
q, k, v = qkv.reshape(bs * self.n_heads, ch * 3, length).split(ch, dim=1) | |
scale = 1 / math.sqrt(math.sqrt(ch)) | |
weight = torch.einsum("bct,bcs->bts", q * scale, k * scale) # More stable with f16 than dividing afterwards | |
weight = weight + qk_bias | |
if mask is not None: | |
mask = mask.repeat(self.n_heads, 1, 1) | |
weight[mask.logical_not()] = -torch.inf | |
weight = torch.softmax(weight.float(), dim=-1).type(weight.dtype) | |
a = torch.einsum("bts,bcs->bct", weight, v) | |
return a.reshape(bs, -1, length) | |
class AttentionBlock(nn.Module): | |
"""An attention block that allows spatial positions to attend to each other.""" | |
def __init__( | |
self, | |
channels, | |
num_heads=1, | |
num_head_channels=-1, | |
out_channels=None, | |
do_activation=False, | |
): | |
super().__init__() | |
self.channels = channels | |
out_channels = channels if out_channels is None else out_channels | |
self.do_activation = do_activation | |
if num_head_channels == -1: | |
self.num_heads = num_heads | |
else: | |
assert ( | |
channels % num_head_channels == 0 | |
), f"q,k,v channels {channels} is not divisible by num_head_channels {num_head_channels}" | |
self.num_heads = channels // num_head_channels | |
self.norm = normalization(channels) | |
self.qkv = conv_nd(1, channels, out_channels * 3, 1) | |
self.attention = QKVAttention(self.num_heads) | |
self.x_proj = nn.Identity() if out_channels == channels else conv_nd(1, channels, out_channels, 1) | |
self.proj_out = zero_module(conv_nd(1, out_channels, out_channels, 1)) | |
def forward(self, x, mask=None, qk_bias=0): | |
b, c, *spatial = x.shape | |
if mask is not None: | |
if len(mask.shape) == 2: | |
mask = mask.unsqueeze(0).repeat(x.shape[0], 1, 1) | |
if mask.shape[1] != x.shape[-1]: | |
mask = mask[:, : x.shape[-1], : x.shape[-1]] | |
x = x.reshape(b, c, -1) | |
x = self.norm(x) | |
if self.do_activation: | |
x = F.silu(x, inplace=True) | |
qkv = self.qkv(x) | |
h = self.attention(qkv, mask=mask, qk_bias=qk_bias) | |
h = self.proj_out(h) | |
xp = self.x_proj(x) | |
return (xp + h).reshape(b, xp.shape[1], *spatial) | |
class ConditioningEncoder(nn.Module): | |
def __init__( | |
self, | |
spec_dim, | |
embedding_dim, | |
attn_blocks=6, | |
num_attn_heads=4, | |
): | |
super().__init__() | |
attn = [] | |
self.init = nn.Conv1d(spec_dim, embedding_dim, kernel_size=1) | |
for a in range(attn_blocks): | |
attn.append(AttentionBlock(embedding_dim, num_attn_heads)) | |
self.attn = nn.Sequential(*attn) | |
self.dim = embedding_dim | |
def forward(self, x): | |
""" | |
x: (b, 80, s) | |
""" | |
h = self.init(x) | |
h = self.attn(h) | |
return h | |