clonar-voz / TTS /bin /extract_tts_spectrograms.py
Shadhil's picture
voice-clone with single audio sample input
9b2107c
raw
history blame
9.49 kB
#!/usr/bin/env python3
"""Extract Mel spectrograms with teacher forcing."""
import argparse
import os
import numpy as np
import torch
from torch.utils.data import DataLoader
from tqdm import tqdm
from TTS.config import load_config
from TTS.tts.datasets import TTSDataset, load_tts_samples
from TTS.tts.models import setup_model
from TTS.tts.utils.speakers import SpeakerManager
from TTS.tts.utils.text.tokenizer import TTSTokenizer
from TTS.utils.audio import AudioProcessor
from TTS.utils.audio.numpy_transforms import quantize
from TTS.utils.generic_utils import count_parameters
use_cuda = torch.cuda.is_available()
def setup_loader(ap, r, verbose=False):
tokenizer, _ = TTSTokenizer.init_from_config(c)
dataset = TTSDataset(
outputs_per_step=r,
compute_linear_spec=False,
samples=meta_data,
tokenizer=tokenizer,
ap=ap,
batch_group_size=0,
min_text_len=c.min_text_len,
max_text_len=c.max_text_len,
min_audio_len=c.min_audio_len,
max_audio_len=c.max_audio_len,
phoneme_cache_path=c.phoneme_cache_path,
precompute_num_workers=0,
use_noise_augment=False,
verbose=verbose,
speaker_id_mapping=speaker_manager.name_to_id if c.use_speaker_embedding else None,
d_vector_mapping=speaker_manager.embeddings if c.use_d_vector_file else None,
)
if c.use_phonemes and c.compute_input_seq_cache:
# precompute phonemes to have a better estimate of sequence lengths.
dataset.compute_input_seq(c.num_loader_workers)
dataset.preprocess_samples()
loader = DataLoader(
dataset,
batch_size=c.batch_size,
shuffle=False,
collate_fn=dataset.collate_fn,
drop_last=False,
sampler=None,
num_workers=c.num_loader_workers,
pin_memory=False,
)
return loader
def set_filename(wav_path, out_path):
wav_file = os.path.basename(wav_path)
file_name = wav_file.split(".")[0]
os.makedirs(os.path.join(out_path, "quant"), exist_ok=True)
os.makedirs(os.path.join(out_path, "mel"), exist_ok=True)
os.makedirs(os.path.join(out_path, "wav_gl"), exist_ok=True)
os.makedirs(os.path.join(out_path, "wav"), exist_ok=True)
wavq_path = os.path.join(out_path, "quant", file_name)
mel_path = os.path.join(out_path, "mel", file_name)
wav_gl_path = os.path.join(out_path, "wav_gl", file_name + ".wav")
wav_path = os.path.join(out_path, "wav", file_name + ".wav")
return file_name, wavq_path, mel_path, wav_gl_path, wav_path
def format_data(data):
# setup input data
text_input = data["token_id"]
text_lengths = data["token_id_lengths"]
mel_input = data["mel"]
mel_lengths = data["mel_lengths"]
item_idx = data["item_idxs"]
d_vectors = data["d_vectors"]
speaker_ids = data["speaker_ids"]
attn_mask = data["attns"]
avg_text_length = torch.mean(text_lengths.float())
avg_spec_length = torch.mean(mel_lengths.float())
# dispatch data to GPU
if use_cuda:
text_input = text_input.cuda(non_blocking=True)
text_lengths = text_lengths.cuda(non_blocking=True)
mel_input = mel_input.cuda(non_blocking=True)
mel_lengths = mel_lengths.cuda(non_blocking=True)
if speaker_ids is not None:
speaker_ids = speaker_ids.cuda(non_blocking=True)
if d_vectors is not None:
d_vectors = d_vectors.cuda(non_blocking=True)
if attn_mask is not None:
attn_mask = attn_mask.cuda(non_blocking=True)
return (
text_input,
text_lengths,
mel_input,
mel_lengths,
speaker_ids,
d_vectors,
avg_text_length,
avg_spec_length,
attn_mask,
item_idx,
)
@torch.no_grad()
def inference(
model_name,
model,
ap,
text_input,
text_lengths,
mel_input,
mel_lengths,
speaker_ids=None,
d_vectors=None,
):
if model_name == "glow_tts":
speaker_c = None
if speaker_ids is not None:
speaker_c = speaker_ids
elif d_vectors is not None:
speaker_c = d_vectors
outputs = model.inference_with_MAS(
text_input,
text_lengths,
mel_input,
mel_lengths,
aux_input={"d_vectors": speaker_c, "speaker_ids": speaker_ids},
)
model_output = outputs["model_outputs"]
model_output = model_output.detach().cpu().numpy()
elif "tacotron" in model_name:
aux_input = {"speaker_ids": speaker_ids, "d_vectors": d_vectors}
outputs = model(text_input, text_lengths, mel_input, mel_lengths, aux_input)
postnet_outputs = outputs["model_outputs"]
# normalize tacotron output
if model_name == "tacotron":
mel_specs = []
postnet_outputs = postnet_outputs.data.cpu().numpy()
for b in range(postnet_outputs.shape[0]):
postnet_output = postnet_outputs[b]
mel_specs.append(torch.FloatTensor(ap.out_linear_to_mel(postnet_output.T).T))
model_output = torch.stack(mel_specs).cpu().numpy()
elif model_name == "tacotron2":
model_output = postnet_outputs.detach().cpu().numpy()
return model_output
def extract_spectrograms(
data_loader, model, ap, output_path, quantize_bits=0, save_audio=False, debug=False, metada_name="metada.txt"
):
model.eval()
export_metadata = []
for _, data in tqdm(enumerate(data_loader), total=len(data_loader)):
# format data
(
text_input,
text_lengths,
mel_input,
mel_lengths,
speaker_ids,
d_vectors,
_,
_,
_,
item_idx,
) = format_data(data)
model_output = inference(
c.model.lower(),
model,
ap,
text_input,
text_lengths,
mel_input,
mel_lengths,
speaker_ids,
d_vectors,
)
for idx in range(text_input.shape[0]):
wav_file_path = item_idx[idx]
wav = ap.load_wav(wav_file_path)
_, wavq_path, mel_path, wav_gl_path, wav_path = set_filename(wav_file_path, output_path)
# quantize and save wav
if quantize_bits > 0:
wavq = quantize(wav, quantize_bits)
np.save(wavq_path, wavq)
# save TTS mel
mel = model_output[idx]
mel_length = mel_lengths[idx]
mel = mel[:mel_length, :].T
np.save(mel_path, mel)
export_metadata.append([wav_file_path, mel_path])
if save_audio:
ap.save_wav(wav, wav_path)
if debug:
print("Audio for debug saved at:", wav_gl_path)
wav = ap.inv_melspectrogram(mel)
ap.save_wav(wav, wav_gl_path)
with open(os.path.join(output_path, metada_name), "w", encoding="utf-8") as f:
for data in export_metadata:
f.write(f"{data[0]}|{data[1]+'.npy'}\n")
def main(args): # pylint: disable=redefined-outer-name
# pylint: disable=global-variable-undefined
global meta_data, speaker_manager
# Audio processor
ap = AudioProcessor(**c.audio)
# load data instances
meta_data_train, meta_data_eval = load_tts_samples(
c.datasets, eval_split=args.eval, eval_split_max_size=c.eval_split_max_size, eval_split_size=c.eval_split_size
)
# use eval and training partitions
meta_data = meta_data_train + meta_data_eval
# init speaker manager
if c.use_speaker_embedding:
speaker_manager = SpeakerManager(data_items=meta_data)
elif c.use_d_vector_file:
speaker_manager = SpeakerManager(d_vectors_file_path=c.d_vector_file)
else:
speaker_manager = None
# setup model
model = setup_model(c)
# restore model
model.load_checkpoint(c, args.checkpoint_path, eval=True)
if use_cuda:
model.cuda()
num_params = count_parameters(model)
print("\n > Model has {} parameters".format(num_params), flush=True)
# set r
r = 1 if c.model.lower() == "glow_tts" else model.decoder.r
own_loader = setup_loader(ap, r, verbose=True)
extract_spectrograms(
own_loader,
model,
ap,
args.output_path,
quantize_bits=args.quantize_bits,
save_audio=args.save_audio,
debug=args.debug,
metada_name="metada.txt",
)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--config_path", type=str, help="Path to config file for training.", required=True)
parser.add_argument("--checkpoint_path", type=str, help="Model file to be restored.", required=True)
parser.add_argument("--output_path", type=str, help="Path to save mel specs", required=True)
parser.add_argument("--debug", default=False, action="store_true", help="Save audio files for debug")
parser.add_argument("--save_audio", default=False, action="store_true", help="Save audio files")
parser.add_argument("--quantize_bits", type=int, default=0, help="Save quantized audio files if non-zero")
parser.add_argument("--eval", type=bool, help="compute eval.", default=True)
args = parser.parse_args()
c = load_config(args.config_path)
c.audio.trim_silence = False
main(args)