Spaces:
Running
Running
from typing import Generator | |
from trainer.trainer_utils import get_optimizer | |
class CapacitronOptimizer: | |
"""Double optimizer class for the Capacitron model.""" | |
def __init__(self, config: dict, model_params: Generator) -> None: | |
self.primary_params, self.secondary_params = self.split_model_parameters(model_params) | |
optimizer_names = list(config.optimizer_params.keys()) | |
optimizer_parameters = list(config.optimizer_params.values()) | |
self.primary_optimizer = get_optimizer( | |
optimizer_names[0], | |
optimizer_parameters[0], | |
config.lr, | |
parameters=self.primary_params, | |
) | |
self.secondary_optimizer = get_optimizer( | |
optimizer_names[1], | |
self.extract_optimizer_parameters(optimizer_parameters[1]), | |
optimizer_parameters[1]["lr"], | |
parameters=self.secondary_params, | |
) | |
self.param_groups = self.primary_optimizer.param_groups | |
def first_step(self): | |
self.secondary_optimizer.step() | |
self.secondary_optimizer.zero_grad() | |
self.primary_optimizer.zero_grad() | |
def step(self): | |
# Update param groups to display the correct learning rate | |
self.param_groups = self.primary_optimizer.param_groups | |
self.primary_optimizer.step() | |
def zero_grad(self, set_to_none=False): | |
self.primary_optimizer.zero_grad(set_to_none) | |
self.secondary_optimizer.zero_grad(set_to_none) | |
def load_state_dict(self, state_dict): | |
self.primary_optimizer.load_state_dict(state_dict[0]) | |
self.secondary_optimizer.load_state_dict(state_dict[1]) | |
def state_dict(self): | |
return [self.primary_optimizer.state_dict(), self.secondary_optimizer.state_dict()] | |
def split_model_parameters(model_params: Generator) -> list: | |
primary_params = [] | |
secondary_params = [] | |
for name, param in model_params: | |
if param.requires_grad: | |
if name == "capacitron_vae_layer.beta": | |
secondary_params.append(param) | |
else: | |
primary_params.append(param) | |
return [iter(primary_params), iter(secondary_params)] | |
def extract_optimizer_parameters(params: dict) -> dict: | |
"""Extract parameters that are not the learning rate""" | |
return {k: v for k, v in params.items() if k != "lr"} | |