Spaces:
Running
Running
# Adapted from https://github.com/pytorch/audio/ | |
import hashlib | |
import logging | |
import os | |
import tarfile | |
import urllib | |
import urllib.request | |
import zipfile | |
from os.path import expanduser | |
from typing import Any, Iterable, List, Optional | |
from torch.utils.model_zoo import tqdm | |
def stream_url( | |
url: str, start_byte: Optional[int] = None, block_size: int = 32 * 1024, progress_bar: bool = True | |
) -> Iterable: | |
"""Stream url by chunk | |
Args: | |
url (str): Url. | |
start_byte (int or None, optional): Start streaming at that point (Default: ``None``). | |
block_size (int, optional): Size of chunks to stream (Default: ``32 * 1024``). | |
progress_bar (bool, optional): Display a progress bar (Default: ``True``). | |
""" | |
# If we already have the whole file, there is no need to download it again | |
req = urllib.request.Request(url, method="HEAD") | |
with urllib.request.urlopen(req) as response: | |
url_size = int(response.info().get("Content-Length", -1)) | |
if url_size == start_byte: | |
return | |
req = urllib.request.Request(url) | |
if start_byte: | |
req.headers["Range"] = "bytes={}-".format(start_byte) | |
with urllib.request.urlopen(req) as upointer, tqdm( | |
unit="B", | |
unit_scale=True, | |
unit_divisor=1024, | |
total=url_size, | |
disable=not progress_bar, | |
) as pbar: | |
num_bytes = 0 | |
while True: | |
chunk = upointer.read(block_size) | |
if not chunk: | |
break | |
yield chunk | |
num_bytes += len(chunk) | |
pbar.update(len(chunk)) | |
def download_url( | |
url: str, | |
download_folder: str, | |
filename: Optional[str] = None, | |
hash_value: Optional[str] = None, | |
hash_type: str = "sha256", | |
progress_bar: bool = True, | |
resume: bool = False, | |
) -> None: | |
"""Download file to disk. | |
Args: | |
url (str): Url. | |
download_folder (str): Folder to download file. | |
filename (str or None, optional): Name of downloaded file. If None, it is inferred from the url | |
(Default: ``None``). | |
hash_value (str or None, optional): Hash for url (Default: ``None``). | |
hash_type (str, optional): Hash type, among "sha256" and "md5" (Default: ``"sha256"``). | |
progress_bar (bool, optional): Display a progress bar (Default: ``True``). | |
resume (bool, optional): Enable resuming download (Default: ``False``). | |
""" | |
req = urllib.request.Request(url, method="HEAD") | |
req_info = urllib.request.urlopen(req).info() # pylint: disable=consider-using-with | |
# Detect filename | |
filename = filename or req_info.get_filename() or os.path.basename(url) | |
filepath = os.path.join(download_folder, filename) | |
if resume and os.path.exists(filepath): | |
mode = "ab" | |
local_size: Optional[int] = os.path.getsize(filepath) | |
elif not resume and os.path.exists(filepath): | |
raise RuntimeError("{} already exists. Delete the file manually and retry.".format(filepath)) | |
else: | |
mode = "wb" | |
local_size = None | |
if hash_value and local_size == int(req_info.get("Content-Length", -1)): | |
with open(filepath, "rb") as file_obj: | |
if validate_file(file_obj, hash_value, hash_type): | |
return | |
raise RuntimeError("The hash of {} does not match. Delete the file manually and retry.".format(filepath)) | |
with open(filepath, mode) as fpointer: | |
for chunk in stream_url(url, start_byte=local_size, progress_bar=progress_bar): | |
fpointer.write(chunk) | |
with open(filepath, "rb") as file_obj: | |
if hash_value and not validate_file(file_obj, hash_value, hash_type): | |
raise RuntimeError("The hash of {} does not match. Delete the file manually and retry.".format(filepath)) | |
def validate_file(file_obj: Any, hash_value: str, hash_type: str = "sha256") -> bool: | |
"""Validate a given file object with its hash. | |
Args: | |
file_obj: File object to read from. | |
hash_value (str): Hash for url. | |
hash_type (str, optional): Hash type, among "sha256" and "md5" (Default: ``"sha256"``). | |
Returns: | |
bool: return True if its a valid file, else False. | |
""" | |
if hash_type == "sha256": | |
hash_func = hashlib.sha256() | |
elif hash_type == "md5": | |
hash_func = hashlib.md5() | |
else: | |
raise ValueError | |
while True: | |
# Read by chunk to avoid filling memory | |
chunk = file_obj.read(1024**2) | |
if not chunk: | |
break | |
hash_func.update(chunk) | |
return hash_func.hexdigest() == hash_value | |
def extract_archive(from_path: str, to_path: Optional[str] = None, overwrite: bool = False) -> List[str]: | |
"""Extract archive. | |
Args: | |
from_path (str): the path of the archive. | |
to_path (str or None, optional): the root path of the extraced files (directory of from_path) | |
(Default: ``None``) | |
overwrite (bool, optional): overwrite existing files (Default: ``False``) | |
Returns: | |
list: List of paths to extracted files even if not overwritten. | |
""" | |
if to_path is None: | |
to_path = os.path.dirname(from_path) | |
try: | |
with tarfile.open(from_path, "r") as tar: | |
logging.info("Opened tar file %s.", from_path) | |
files = [] | |
for file_ in tar: # type: Any | |
file_path = os.path.join(to_path, file_.name) | |
if file_.isfile(): | |
files.append(file_path) | |
if os.path.exists(file_path): | |
logging.info("%s already extracted.", file_path) | |
if not overwrite: | |
continue | |
tar.extract(file_, to_path) | |
return files | |
except tarfile.ReadError: | |
pass | |
try: | |
with zipfile.ZipFile(from_path, "r") as zfile: | |
logging.info("Opened zip file %s.", from_path) | |
files = zfile.namelist() | |
for file_ in files: | |
file_path = os.path.join(to_path, file_) | |
if os.path.exists(file_path): | |
logging.info("%s already extracted.", file_path) | |
if not overwrite: | |
continue | |
zfile.extract(file_, to_path) | |
return files | |
except zipfile.BadZipFile: | |
pass | |
raise NotImplementedError(" > [!] only supports tar.gz, tgz, and zip achives.") | |
def download_kaggle_dataset(dataset_path: str, dataset_name: str, output_path: str): | |
"""Download dataset from kaggle. | |
Args: | |
dataset_path (str): | |
This the kaggle link to the dataset. for example vctk is 'mfekadu/english-multispeaker-corpus-for-voice-cloning' | |
dataset_name (str): Name of the folder the dataset will be saved in. | |
output_path (str): Path of the location you want the dataset folder to be saved to. | |
""" | |
data_path = os.path.join(output_path, dataset_name) | |
try: | |
import kaggle # pylint: disable=import-outside-toplevel | |
kaggle.api.authenticate() | |
print(f"""\nDownloading {dataset_name}...""") | |
kaggle.api.dataset_download_files(dataset_path, path=data_path, unzip=True) | |
except OSError: | |
print( | |
f"""[!] in order to download kaggle datasets, you need to have a kaggle api token stored in your {os.path.join(expanduser('~'), '.kaggle/kaggle.json')}""" | |
) | |