Spaces:
Running
Running
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from vocoder.distribution import sample_from_discretized_mix_logistic | |
from vocoder.display import * | |
from vocoder.audio import * | |
class ResBlock(nn.Module): | |
def __init__(self, dims): | |
super().__init__() | |
self.conv1 = nn.Conv1d(dims, dims, kernel_size=1, bias=False) | |
self.conv2 = nn.Conv1d(dims, dims, kernel_size=1, bias=False) | |
self.batch_norm1 = nn.BatchNorm1d(dims) | |
self.batch_norm2 = nn.BatchNorm1d(dims) | |
def forward(self, x): | |
residual = x | |
x = self.conv1(x) | |
x = self.batch_norm1(x) | |
x = F.relu(x) | |
x = self.conv2(x) | |
x = self.batch_norm2(x) | |
return x + residual | |
class MelResNet(nn.Module): | |
def __init__(self, res_blocks, in_dims, compute_dims, res_out_dims, pad): | |
super().__init__() | |
k_size = pad * 2 + 1 | |
self.conv_in = nn.Conv1d(in_dims, compute_dims, kernel_size=k_size, bias=False) | |
self.batch_norm = nn.BatchNorm1d(compute_dims) | |
self.layers = nn.ModuleList() | |
for i in range(res_blocks): | |
self.layers.append(ResBlock(compute_dims)) | |
self.conv_out = nn.Conv1d(compute_dims, res_out_dims, kernel_size=1) | |
def forward(self, x): | |
x = self.conv_in(x) | |
x = self.batch_norm(x) | |
x = F.relu(x) | |
for f in self.layers: x = f(x) | |
x = self.conv_out(x) | |
return x | |
class Stretch2d(nn.Module): | |
def __init__(self, x_scale, y_scale): | |
super().__init__() | |
self.x_scale = x_scale | |
self.y_scale = y_scale | |
def forward(self, x): | |
b, c, h, w = x.size() | |
x = x.unsqueeze(-1).unsqueeze(3) | |
x = x.repeat(1, 1, 1, self.y_scale, 1, self.x_scale) | |
return x.view(b, c, h * self.y_scale, w * self.x_scale) | |
class UpsampleNetwork(nn.Module): | |
def __init__(self, feat_dims, upsample_scales, compute_dims, | |
res_blocks, res_out_dims, pad): | |
super().__init__() | |
total_scale = np.cumproduct(upsample_scales)[-1] | |
self.indent = pad * total_scale | |
self.resnet = MelResNet(res_blocks, feat_dims, compute_dims, res_out_dims, pad) | |
self.resnet_stretch = Stretch2d(total_scale, 1) | |
self.up_layers = nn.ModuleList() | |
for scale in upsample_scales: | |
k_size = (1, scale * 2 + 1) | |
padding = (0, scale) | |
stretch = Stretch2d(scale, 1) | |
conv = nn.Conv2d(1, 1, kernel_size=k_size, padding=padding, bias=False) | |
conv.weight.data.fill_(1. / k_size[1]) | |
self.up_layers.append(stretch) | |
self.up_layers.append(conv) | |
def forward(self, m): | |
aux = self.resnet(m).unsqueeze(1) | |
aux = self.resnet_stretch(aux) | |
aux = aux.squeeze(1) | |
m = m.unsqueeze(1) | |
for f in self.up_layers: m = f(m) | |
m = m.squeeze(1)[:, :, self.indent:-self.indent] | |
return m.transpose(1, 2), aux.transpose(1, 2) | |
class WaveRNN(nn.Module): | |
def __init__(self, rnn_dims, fc_dims, bits, pad, upsample_factors, | |
feat_dims, compute_dims, res_out_dims, res_blocks, | |
hop_length, sample_rate, mode='RAW'): | |
super().__init__() | |
self.mode = mode | |
self.pad = pad | |
if self.mode == 'RAW' : | |
self.n_classes = 2 ** bits | |
elif self.mode == 'MOL' : | |
self.n_classes = 30 | |
else : | |
RuntimeError("Unknown model mode value - ", self.mode) | |
self.rnn_dims = rnn_dims | |
self.aux_dims = res_out_dims // 4 | |
self.hop_length = hop_length | |
self.sample_rate = sample_rate | |
self.upsample = UpsampleNetwork(feat_dims, upsample_factors, compute_dims, res_blocks, res_out_dims, pad) | |
self.I = nn.Linear(feat_dims + self.aux_dims + 1, rnn_dims) | |
self.rnn1 = nn.GRU(rnn_dims, rnn_dims, batch_first=True) | |
self.rnn2 = nn.GRU(rnn_dims + self.aux_dims, rnn_dims, batch_first=True) | |
self.fc1 = nn.Linear(rnn_dims + self.aux_dims, fc_dims) | |
self.fc2 = nn.Linear(fc_dims + self.aux_dims, fc_dims) | |
self.fc3 = nn.Linear(fc_dims, self.n_classes) | |
self.step = nn.Parameter(torch.zeros(1).long(), requires_grad=False) | |
self.num_params() | |
def forward(self, x, mels): | |
self.step += 1 | |
bsize = x.size(0) | |
if torch.cuda.is_available(): | |
h1 = torch.zeros(1, bsize, self.rnn_dims).cuda() | |
h2 = torch.zeros(1, bsize, self.rnn_dims).cuda() | |
else: | |
h1 = torch.zeros(1, bsize, self.rnn_dims).cpu() | |
h2 = torch.zeros(1, bsize, self.rnn_dims).cpu() | |
mels, aux = self.upsample(mels) | |
aux_idx = [self.aux_dims * i for i in range(5)] | |
a1 = aux[:, :, aux_idx[0]:aux_idx[1]] | |
a2 = aux[:, :, aux_idx[1]:aux_idx[2]] | |
a3 = aux[:, :, aux_idx[2]:aux_idx[3]] | |
a4 = aux[:, :, aux_idx[3]:aux_idx[4]] | |
x = torch.cat([x.unsqueeze(-1), mels, a1], dim=2) | |
x = self.I(x) | |
res = x | |
x, _ = self.rnn1(x, h1) | |
x = x + res | |
res = x | |
x = torch.cat([x, a2], dim=2) | |
x, _ = self.rnn2(x, h2) | |
x = x + res | |
x = torch.cat([x, a3], dim=2) | |
x = F.relu(self.fc1(x)) | |
x = torch.cat([x, a4], dim=2) | |
x = F.relu(self.fc2(x)) | |
return self.fc3(x) | |
def generate(self, mels, batched, target, overlap, mu_law, progress_callback=None): | |
mu_law = mu_law if self.mode == 'RAW' else False | |
progress_callback = progress_callback or self.gen_display | |
self.eval() | |
output = [] | |
start = time.time() | |
rnn1 = self.get_gru_cell(self.rnn1) | |
rnn2 = self.get_gru_cell(self.rnn2) | |
with torch.no_grad(): | |
if torch.cuda.is_available(): | |
mels = mels.cuda() | |
else: | |
mels = mels.cpu() | |
wave_len = (mels.size(-1) - 1) * self.hop_length | |
mels = self.pad_tensor(mels.transpose(1, 2), pad=self.pad, side='both') | |
mels, aux = self.upsample(mels.transpose(1, 2)) | |
if batched: | |
mels = self.fold_with_overlap(mels, target, overlap) | |
aux = self.fold_with_overlap(aux, target, overlap) | |
b_size, seq_len, _ = mels.size() | |
if torch.cuda.is_available(): | |
h1 = torch.zeros(b_size, self.rnn_dims).cuda() | |
h2 = torch.zeros(b_size, self.rnn_dims).cuda() | |
x = torch.zeros(b_size, 1).cuda() | |
else: | |
h1 = torch.zeros(b_size, self.rnn_dims).cpu() | |
h2 = torch.zeros(b_size, self.rnn_dims).cpu() | |
x = torch.zeros(b_size, 1).cpu() | |
d = self.aux_dims | |
aux_split = [aux[:, :, d * i:d * (i + 1)] for i in range(4)] | |
for i in range(seq_len): | |
m_t = mels[:, i, :] | |
a1_t, a2_t, a3_t, a4_t = (a[:, i, :] for a in aux_split) | |
x = torch.cat([x, m_t, a1_t], dim=1) | |
x = self.I(x) | |
h1 = rnn1(x, h1) | |
x = x + h1 | |
inp = torch.cat([x, a2_t], dim=1) | |
h2 = rnn2(inp, h2) | |
x = x + h2 | |
x = torch.cat([x, a3_t], dim=1) | |
x = F.relu(self.fc1(x)) | |
x = torch.cat([x, a4_t], dim=1) | |
x = F.relu(self.fc2(x)) | |
logits = self.fc3(x) | |
if self.mode == 'MOL': | |
sample = sample_from_discretized_mix_logistic(logits.unsqueeze(0).transpose(1, 2)) | |
output.append(sample.view(-1)) | |
if torch.cuda.is_available(): | |
# x = torch.FloatTensor([[sample]]).cuda() | |
x = sample.transpose(0, 1).cuda() | |
else: | |
x = sample.transpose(0, 1) | |
elif self.mode == 'RAW' : | |
posterior = F.softmax(logits, dim=1) | |
distrib = torch.distributions.Categorical(posterior) | |
sample = 2 * distrib.sample().float() / (self.n_classes - 1.) - 1. | |
output.append(sample) | |
x = sample.unsqueeze(-1) | |
else: | |
raise RuntimeError("Unknown model mode value - ", self.mode) | |
if i % 100 == 0: | |
gen_rate = (i + 1) / (time.time() - start) * b_size / 1000 | |
progress_callback(i, seq_len, b_size, gen_rate) | |
output = torch.stack(output).transpose(0, 1) | |
output = output.cpu().numpy() | |
output = output.astype(np.float64) | |
if batched: | |
output = self.xfade_and_unfold(output, target, overlap) | |
else: | |
output = output[0] | |
if mu_law: | |
output = decode_mu_law(output, self.n_classes, False) | |
if hp.apply_preemphasis: | |
output = de_emphasis(output) | |
# Fade-out at the end to avoid signal cutting out suddenly | |
fade_out = np.linspace(1, 0, 20 * self.hop_length) | |
output = output[:wave_len] | |
output[-20 * self.hop_length:] *= fade_out | |
self.train() | |
return output | |
def gen_display(self, i, seq_len, b_size, gen_rate): | |
pbar = progbar(i, seq_len) | |
msg = f'| {pbar} {i*b_size}/{seq_len*b_size} | Batch Size: {b_size} | Gen Rate: {gen_rate:.1f}kHz | ' | |
stream(msg) | |
def get_gru_cell(self, gru): | |
gru_cell = nn.GRUCell(gru.input_size, gru.hidden_size) | |
gru_cell.weight_hh.data = gru.weight_hh_l0.data | |
gru_cell.weight_ih.data = gru.weight_ih_l0.data | |
gru_cell.bias_hh.data = gru.bias_hh_l0.data | |
gru_cell.bias_ih.data = gru.bias_ih_l0.data | |
return gru_cell | |
def pad_tensor(self, x, pad, side='both'): | |
# NB - this is just a quick method i need right now | |
# i.e., it won't generalise to other shapes/dims | |
b, t, c = x.size() | |
total = t + 2 * pad if side == 'both' else t + pad | |
if torch.cuda.is_available(): | |
padded = torch.zeros(b, total, c).cuda() | |
else: | |
padded = torch.zeros(b, total, c).cpu() | |
if side == 'before' or side == 'both': | |
padded[:, pad:pad + t, :] = x | |
elif side == 'after': | |
padded[:, :t, :] = x | |
return padded | |
def fold_with_overlap(self, x, target, overlap): | |
''' Fold the tensor with overlap for quick batched inference. | |
Overlap will be used for crossfading in xfade_and_unfold() | |
Args: | |
x (tensor) : Upsampled conditioning features. | |
shape=(1, timesteps, features) | |
target (int) : Target timesteps for each index of batch | |
overlap (int) : Timesteps for both xfade and rnn warmup | |
Return: | |
(tensor) : shape=(num_folds, target + 2 * overlap, features) | |
Details: | |
x = [[h1, h2, ... hn]] | |
Where each h is a vector of conditioning features | |
Eg: target=2, overlap=1 with x.size(1)=10 | |
folded = [[h1, h2, h3, h4], | |
[h4, h5, h6, h7], | |
[h7, h8, h9, h10]] | |
''' | |
_, total_len, features = x.size() | |
# Calculate variables needed | |
num_folds = (total_len - overlap) // (target + overlap) | |
extended_len = num_folds * (overlap + target) + overlap | |
remaining = total_len - extended_len | |
# Pad if some time steps poking out | |
if remaining != 0: | |
num_folds += 1 | |
padding = target + 2 * overlap - remaining | |
x = self.pad_tensor(x, padding, side='after') | |
if torch.cuda.is_available(): | |
folded = torch.zeros(num_folds, target + 2 * overlap, features).cuda() | |
else: | |
folded = torch.zeros(num_folds, target + 2 * overlap, features).cpu() | |
# Get the values for the folded tensor | |
for i in range(num_folds): | |
start = i * (target + overlap) | |
end = start + target + 2 * overlap | |
folded[i] = x[:, start:end, :] | |
return folded | |
def xfade_and_unfold(self, y, target, overlap): | |
''' Applies a crossfade and unfolds into a 1d array. | |
Args: | |
y (ndarry) : Batched sequences of audio samples | |
shape=(num_folds, target + 2 * overlap) | |
dtype=np.float64 | |
overlap (int) : Timesteps for both xfade and rnn warmup | |
Return: | |
(ndarry) : audio samples in a 1d array | |
shape=(total_len) | |
dtype=np.float64 | |
Details: | |
y = [[seq1], | |
[seq2], | |
[seq3]] | |
Apply a gain envelope at both ends of the sequences | |
y = [[seq1_in, seq1_target, seq1_out], | |
[seq2_in, seq2_target, seq2_out], | |
[seq3_in, seq3_target, seq3_out]] | |
Stagger and add up the groups of samples: | |
[seq1_in, seq1_target, (seq1_out + seq2_in), seq2_target, ...] | |
''' | |
num_folds, length = y.shape | |
target = length - 2 * overlap | |
total_len = num_folds * (target + overlap) + overlap | |
# Need some silence for the rnn warmup | |
silence_len = overlap // 2 | |
fade_len = overlap - silence_len | |
silence = np.zeros((silence_len), dtype=np.float64) | |
# Equal power crossfade | |
t = np.linspace(-1, 1, fade_len, dtype=np.float64) | |
fade_in = np.sqrt(0.5 * (1 + t)) | |
fade_out = np.sqrt(0.5 * (1 - t)) | |
# Concat the silence to the fades | |
fade_in = np.concatenate([silence, fade_in]) | |
fade_out = np.concatenate([fade_out, silence]) | |
# Apply the gain to the overlap samples | |
y[:, :overlap] *= fade_in | |
y[:, -overlap:] *= fade_out | |
unfolded = np.zeros((total_len), dtype=np.float64) | |
# Loop to add up all the samples | |
for i in range(num_folds): | |
start = i * (target + overlap) | |
end = start + target + 2 * overlap | |
unfolded[start:end] += y[i] | |
return unfolded | |
def get_step(self) : | |
return self.step.data.item() | |
def checkpoint(self, model_dir, optimizer) : | |
k_steps = self.get_step() // 1000 | |
self.save(model_dir.joinpath("checkpoint_%dk_steps.pt" % k_steps), optimizer) | |
def log(self, path, msg) : | |
with open(path, 'a') as f: | |
print(msg, file=f) | |
def load(self, path, optimizer) : | |
checkpoint = torch.load(path) | |
if "optimizer_state" in checkpoint: | |
self.load_state_dict(checkpoint["model_state"]) | |
optimizer.load_state_dict(checkpoint["optimizer_state"]) | |
else: | |
# Backwards compatibility | |
self.load_state_dict(checkpoint) | |
def save(self, path, optimizer) : | |
torch.save({ | |
"model_state": self.state_dict(), | |
"optimizer_state": optimizer.state_dict(), | |
}, path) | |
def num_params(self, print_out=True): | |
parameters = filter(lambda p: p.requires_grad, self.parameters()) | |
parameters = sum([np.prod(p.size()) for p in parameters]) / 1_000_000 | |
if print_out : | |
print('Trainable Parameters: %.3fM' % parameters) | |