import os import random import sys import torch import torch.nn.functional as F import torch.utils.data from TTS.tts.models.xtts import load_audio torch.set_num_threads(1) def key_samples_by_col(samples, col): """Returns a dictionary of samples keyed by language.""" samples_by_col = {} for sample in samples: col_val = sample[col] assert isinstance(col_val, str) if col_val not in samples_by_col: samples_by_col[col_val] = [] samples_by_col[col_val].append(sample) return samples_by_col def get_prompt_slice(gt_path, max_sample_length, min_sample_length, sample_rate, is_eval=False): rel_clip = load_audio(gt_path, sample_rate) # if eval uses a middle size sample when it is possible to be more reproducible if is_eval: sample_length = int((min_sample_length + max_sample_length) / 2) else: sample_length = random.randint(min_sample_length, max_sample_length) gap = rel_clip.shape[-1] - sample_length if gap < 0: sample_length = rel_clip.shape[-1] // 2 gap = rel_clip.shape[-1] - sample_length # if eval start always from the position 0 to be more reproducible if is_eval: rand_start = 0 else: rand_start = random.randint(0, gap) rand_end = rand_start + sample_length rel_clip = rel_clip[:, rand_start:rand_end] rel_clip = F.pad(rel_clip, pad=(0, max_sample_length - rel_clip.shape[-1])) cond_idxs = [rand_start, rand_end] return rel_clip, rel_clip.shape[-1], cond_idxs class XTTSDataset(torch.utils.data.Dataset): def __init__(self, config, samples, tokenizer, sample_rate, is_eval=False): self.config = config model_args = config.model_args self.failed_samples = set() self.debug_failures = model_args.debug_loading_failures self.max_conditioning_length = model_args.max_conditioning_length self.min_conditioning_length = model_args.min_conditioning_length self.is_eval = is_eval self.tokenizer = tokenizer self.sample_rate = sample_rate self.max_wav_len = model_args.max_wav_length self.max_text_len = model_args.max_text_length self.use_masking_gt_prompt_approach = model_args.gpt_use_masking_gt_prompt_approach assert self.max_wav_len is not None and self.max_text_len is not None self.samples = samples if not is_eval: random.seed(config.training_seed) # random.shuffle(self.samples) random.shuffle(self.samples) # order by language self.samples = key_samples_by_col(self.samples, "language") print(" > Sampling by language:", self.samples.keys()) else: # for evaluation load and check samples that are corrupted to ensures the reproducibility self.check_eval_samples() def check_eval_samples(self): print(" > Filtering invalid eval samples!!") new_samples = [] for sample in self.samples: try: tseq, _, wav, _, _, _ = self.load_item(sample) except: continue # Basically, this audio file is nonexistent or too long to be supported by the dataset. if ( wav is None or (self.max_wav_len is not None and wav.shape[-1] > self.max_wav_len) or (self.max_text_len is not None and tseq.shape[0] > self.max_text_len) ): continue new_samples.append(sample) self.samples = new_samples print(" > Total eval samples after filtering:", len(self.samples)) def get_text(self, text, lang): tokens = self.tokenizer.encode(text, lang) tokens = torch.IntTensor(tokens) assert not torch.any(tokens == 1), f"UNK token found in {text} -> {self.tokenizer.decode(tokens)}" # The stop token should always be sacred. assert not torch.any(tokens == 0), f"Stop token found in {text}" return tokens def load_item(self, sample): text = str(sample["text"]) tseq = self.get_text(text, sample["language"]) audiopath = sample["audio_file"] wav = load_audio(audiopath, self.sample_rate) if text is None or len(text.strip()) == 0: raise ValueError if wav is None or wav.shape[-1] < (0.5 * self.sample_rate): # Ultra short clips are also useless (and can cause problems within some models). raise ValueError if self.use_masking_gt_prompt_approach: # get a slice from GT to condition the model cond, _, cond_idxs = get_prompt_slice( audiopath, self.max_conditioning_length, self.min_conditioning_length, self.sample_rate, self.is_eval ) # if use masking do not use cond_len cond_len = torch.nan else: ref_sample = ( sample["reference_path"] if "reference_path" in sample and sample["reference_path"] is not None else audiopath ) cond, cond_len, _ = get_prompt_slice( ref_sample, self.max_conditioning_length, self.min_conditioning_length, self.sample_rate, self.is_eval ) # if do not use masking use cond_len cond_idxs = torch.nan return tseq, audiopath, wav, cond, cond_len, cond_idxs def __getitem__(self, index): if self.is_eval: sample = self.samples[index] sample_id = str(index) else: # select a random language lang = random.choice(list(self.samples.keys())) # select random sample index = random.randint(0, len(self.samples[lang]) - 1) sample = self.samples[lang][index] # a unique id for each sampel to deal with fails sample_id = lang + "_" + str(index) # ignore samples that we already know that is not valid ones if sample_id in self.failed_samples: if self.debug_failures: print(f"Ignoring sample {sample['audio_file']} because it was already ignored before !!") # call get item again to get other sample return self[1] # try to load the sample, if fails added it to the failed samples list try: tseq, audiopath, wav, cond, cond_len, cond_idxs = self.load_item(sample) except: if self.debug_failures: print(f"error loading {sample['audio_file']} {sys.exc_info()}") self.failed_samples.add(sample_id) return self[1] # check if the audio and text size limits and if it out of the limits, added it failed_samples if ( wav is None or (self.max_wav_len is not None and wav.shape[-1] > self.max_wav_len) or (self.max_text_len is not None and tseq.shape[0] > self.max_text_len) ): # Basically, this audio file is nonexistent or too long to be supported by the dataset. # It's hard to handle this situation properly. Best bet is to return the a random valid token and skew the dataset somewhat as a result. if self.debug_failures and wav is not None and tseq is not None: print( f"error loading {sample['audio_file']}: ranges are out of bounds; {wav.shape[-1]}, {tseq.shape[0]}" ) self.failed_samples.add(sample_id) return self[1] res = { # 'real_text': text, "text": tseq, "text_lengths": torch.tensor(tseq.shape[0], dtype=torch.long), "wav": wav, "wav_lengths": torch.tensor(wav.shape[-1], dtype=torch.long), "filenames": audiopath, "conditioning": cond.unsqueeze(1), "cond_lens": torch.tensor(cond_len, dtype=torch.long) if cond_len is not torch.nan else torch.tensor([cond_len]), "cond_idxs": torch.tensor(cond_idxs) if cond_idxs is not torch.nan else torch.tensor([cond_idxs]), } return res def __len__(self): if self.is_eval: return len(self.samples) return sum([len(v) for v in self.samples.values()]) def collate_fn(self, batch): # convert list of dicts to dict of lists B = len(batch) batch = {k: [dic[k] for dic in batch] for k in batch[0]} # stack for features that already have the same shape batch["wav_lengths"] = torch.stack(batch["wav_lengths"]) batch["text_lengths"] = torch.stack(batch["text_lengths"]) batch["conditioning"] = torch.stack(batch["conditioning"]) batch["cond_lens"] = torch.stack(batch["cond_lens"]) batch["cond_idxs"] = torch.stack(batch["cond_idxs"]) if torch.any(batch["cond_idxs"].isnan()): batch["cond_idxs"] = None if torch.any(batch["cond_lens"].isnan()): batch["cond_lens"] = None max_text_len = batch["text_lengths"].max() max_wav_len = batch["wav_lengths"].max() # create padding tensors text_padded = torch.IntTensor(B, max_text_len) wav_padded = torch.FloatTensor(B, 1, max_wav_len) # initialize tensors for zero padding text_padded = text_padded.zero_() wav_padded = wav_padded.zero_() for i in range(B): text = batch["text"][i] text_padded[i, : batch["text_lengths"][i]] = torch.IntTensor(text) wav = batch["wav"][i] wav_padded[i, :, : batch["wav_lengths"][i]] = torch.FloatTensor(wav) batch["wav"] = wav_padded batch["padded_text"] = text_padded return batch