from typing import Tuple import torch from torch import nn class AlignmentNetwork(torch.nn.Module): """Aligner Network for learning alignment between the input text and the model output with Gaussian Attention. :: query -> conv1d -> relu -> conv1d -> relu -> conv1d -> L2_dist -> softmax -> alignment key -> conv1d -> relu -> conv1d -----------------------^ Args: in_query_channels (int): Number of channels in the query network. Defaults to 80. in_key_channels (int): Number of channels in the key network. Defaults to 512. attn_channels (int): Number of inner channels in the attention layers. Defaults to 80. temperature (float): Temperature for the softmax. Defaults to 0.0005. """ def __init__( self, in_query_channels=80, in_key_channels=512, attn_channels=80, temperature=0.0005, ): super().__init__() self.temperature = temperature self.softmax = torch.nn.Softmax(dim=3) self.log_softmax = torch.nn.LogSoftmax(dim=3) self.key_layer = nn.Sequential( nn.Conv1d( in_key_channels, in_key_channels * 2, kernel_size=3, padding=1, bias=True, ), torch.nn.ReLU(), nn.Conv1d(in_key_channels * 2, attn_channels, kernel_size=1, padding=0, bias=True), ) self.query_layer = nn.Sequential( nn.Conv1d( in_query_channels, in_query_channels * 2, kernel_size=3, padding=1, bias=True, ), torch.nn.ReLU(), nn.Conv1d(in_query_channels * 2, in_query_channels, kernel_size=1, padding=0, bias=True), torch.nn.ReLU(), nn.Conv1d(in_query_channels, attn_channels, kernel_size=1, padding=0, bias=True), ) self.init_layers() def init_layers(self): torch.nn.init.xavier_uniform_(self.key_layer[0].weight, gain=torch.nn.init.calculate_gain("relu")) torch.nn.init.xavier_uniform_(self.key_layer[2].weight, gain=torch.nn.init.calculate_gain("linear")) torch.nn.init.xavier_uniform_(self.query_layer[0].weight, gain=torch.nn.init.calculate_gain("relu")) torch.nn.init.xavier_uniform_(self.query_layer[2].weight, gain=torch.nn.init.calculate_gain("linear")) torch.nn.init.xavier_uniform_(self.query_layer[4].weight, gain=torch.nn.init.calculate_gain("linear")) def forward( self, queries: torch.tensor, keys: torch.tensor, mask: torch.tensor = None, attn_prior: torch.tensor = None ) -> Tuple[torch.tensor, torch.tensor]: """Forward pass of the aligner encoder. Shapes: - queries: :math:`[B, C, T_de]` - keys: :math:`[B, C_emb, T_en]` - mask: :math:`[B, T_de]` Output: attn (torch.tensor): :math:`[B, 1, T_en, T_de]` soft attention mask. attn_logp (torch.tensor): :math:`[ßB, 1, T_en , T_de]` log probabilities. """ key_out = self.key_layer(keys) query_out = self.query_layer(queries) attn_factor = (query_out[:, :, :, None] - key_out[:, :, None]) ** 2 attn_logp = -self.temperature * attn_factor.sum(1, keepdim=True) if attn_prior is not None: attn_logp = self.log_softmax(attn_logp) + torch.log(attn_prior[:, None] + 1e-8) if mask is not None: attn_logp.data.masked_fill_(~mask.bool().unsqueeze(2), -float("inf")) attn = self.softmax(attn_logp) return attn, attn_logp