import os from urllib import request from tqdm import tqdm DEFAULT_MODELS_DIR = os.path.join(os.path.expanduser("~"), ".cache", "tortoise", "models") MODELS_DIR = os.environ.get("TORTOISE_MODELS_DIR", DEFAULT_MODELS_DIR) MODELS_DIR = "/data/speech_synth/models/" MODELS = { "autoregressive.pth": "https://huggingface.co/jbetker/tortoise-tts-v2/resolve/main/.models/autoregressive.pth", "classifier.pth": "https://huggingface.co/jbetker/tortoise-tts-v2/resolve/main/.models/classifier.pth", "clvp2.pth": "https://huggingface.co/jbetker/tortoise-tts-v2/resolve/main/.models/clvp2.pth", "diffusion_decoder.pth": "https://huggingface.co/jbetker/tortoise-tts-v2/resolve/main/.models/diffusion_decoder.pth", "vocoder.pth": "https://huggingface.co/jbetker/tortoise-tts-v2/resolve/main/.models/vocoder.pth", "rlg_auto.pth": "https://huggingface.co/jbetker/tortoise-tts-v2/resolve/main/.models/rlg_auto.pth", "rlg_diffuser.pth": "https://huggingface.co/jbetker/tortoise-tts-v2/resolve/main/.models/rlg_diffuser.pth", } def download_models(specific_models=None): """ Call to download all the models that Tortoise uses. """ os.makedirs(MODELS_DIR, exist_ok=True) for model_name, url in MODELS.items(): if specific_models is not None and model_name not in specific_models: continue model_path = os.path.join(MODELS_DIR, model_name) if os.path.exists(model_path): continue print(f"Downloading {model_name} from {url}...") with tqdm(unit="B", unit_scale=True, unit_divisor=1024, miniters=1) as t: request.urlretrieve(url, model_path, lambda nb, bs, fs, t=t: t.update(nb * bs - t.n)) print("Done.") def get_model_path(model_name, models_dir=MODELS_DIR): """ Get path to given model, download it if it doesn't exist. """ if model_name not in MODELS: raise ValueError(f"Model {model_name} not found in available models.") model_path = os.path.join(models_dir, model_name) if not os.path.exists(model_path) and models_dir == MODELS_DIR: download_models([model_name]) return model_path