import torch import torchaudio from torch import nn from torch.nn import Conv1d, ConvTranspose1d from torch.nn import functional as F from torch.nn.utils.parametrizations import weight_norm from torch.nn.utils.parametrize import remove_parametrizations from TTS.utils.io import load_fsspec LRELU_SLOPE = 0.1 def get_padding(k, d): return int((k * d - d) / 2) class ResBlock1(torch.nn.Module): """Residual Block Type 1. It has 3 convolutional layers in each convolutional block. Network:: x -> lrelu -> conv1_1 -> conv1_2 -> conv1_3 -> z -> lrelu -> conv2_1 -> conv2_2 -> conv2_3 -> o -> + -> o |--------------------------------------------------------------------------------------------------| Args: channels (int): number of hidden channels for the convolutional layers. kernel_size (int): size of the convolution filter in each layer. dilations (list): list of dilation value for each conv layer in a block. """ def __init__(self, channels, kernel_size=3, dilation=(1, 3, 5)): super().__init__() self.convs1 = nn.ModuleList( [ weight_norm( Conv1d( channels, channels, kernel_size, 1, dilation=dilation[0], padding=get_padding(kernel_size, dilation[0]), ) ), weight_norm( Conv1d( channels, channels, kernel_size, 1, dilation=dilation[1], padding=get_padding(kernel_size, dilation[1]), ) ), weight_norm( Conv1d( channels, channels, kernel_size, 1, dilation=dilation[2], padding=get_padding(kernel_size, dilation[2]), ) ), ] ) self.convs2 = nn.ModuleList( [ weight_norm( Conv1d( channels, channels, kernel_size, 1, dilation=1, padding=get_padding(kernel_size, 1), ) ), weight_norm( Conv1d( channels, channels, kernel_size, 1, dilation=1, padding=get_padding(kernel_size, 1), ) ), weight_norm( Conv1d( channels, channels, kernel_size, 1, dilation=1, padding=get_padding(kernel_size, 1), ) ), ] ) def forward(self, x): """ Args: x (Tensor): input tensor. Returns: Tensor: output tensor. Shapes: x: [B, C, T] """ for c1, c2 in zip(self.convs1, self.convs2): xt = F.leaky_relu(x, LRELU_SLOPE) xt = c1(xt) xt = F.leaky_relu(xt, LRELU_SLOPE) xt = c2(xt) x = xt + x return x def remove_weight_norm(self): for l in self.convs1: remove_parametrizations(l, "weight") for l in self.convs2: remove_parametrizations(l, "weight") class ResBlock2(torch.nn.Module): """Residual Block Type 2. It has 1 convolutional layers in each convolutional block. Network:: x -> lrelu -> conv1-> -> z -> lrelu -> conv2-> o -> + -> o |---------------------------------------------------| Args: channels (int): number of hidden channels for the convolutional layers. kernel_size (int): size of the convolution filter in each layer. dilations (list): list of dilation value for each conv layer in a block. """ def __init__(self, channels, kernel_size=3, dilation=(1, 3)): super().__init__() self.convs = nn.ModuleList( [ weight_norm( Conv1d( channels, channels, kernel_size, 1, dilation=dilation[0], padding=get_padding(kernel_size, dilation[0]), ) ), weight_norm( Conv1d( channels, channels, kernel_size, 1, dilation=dilation[1], padding=get_padding(kernel_size, dilation[1]), ) ), ] ) def forward(self, x): for c in self.convs: xt = F.leaky_relu(x, LRELU_SLOPE) xt = c(xt) x = xt + x return x def remove_weight_norm(self): for l in self.convs: remove_parametrizations(l, "weight") class HifiganGenerator(torch.nn.Module): def __init__( self, in_channels, out_channels, resblock_type, resblock_dilation_sizes, resblock_kernel_sizes, upsample_kernel_sizes, upsample_initial_channel, upsample_factors, inference_padding=5, cond_channels=0, conv_pre_weight_norm=True, conv_post_weight_norm=True, conv_post_bias=True, cond_in_each_up_layer=False, ): r"""HiFiGAN Generator with Multi-Receptive Field Fusion (MRF) Network: x -> lrelu -> upsampling_layer -> resblock1_k1x1 -> z1 -> + -> z_sum / #resblocks -> lrelu -> conv_post_7x1 -> tanh -> o .. -> zI ---| resblockN_kNx1 -> zN ---' Args: in_channels (int): number of input tensor channels. out_channels (int): number of output tensor channels. resblock_type (str): type of the `ResBlock`. '1' or '2'. resblock_dilation_sizes (List[List[int]]): list of dilation values in each layer of a `ResBlock`. resblock_kernel_sizes (List[int]): list of kernel sizes for each `ResBlock`. upsample_kernel_sizes (List[int]): list of kernel sizes for each transposed convolution. upsample_initial_channel (int): number of channels for the first upsampling layer. This is divided by 2 for each consecutive upsampling layer. upsample_factors (List[int]): upsampling factors (stride) for each upsampling layer. inference_padding (int): constant padding applied to the input at inference time. Defaults to 5. """ super().__init__() self.inference_padding = inference_padding self.num_kernels = len(resblock_kernel_sizes) self.num_upsamples = len(upsample_factors) self.cond_in_each_up_layer = cond_in_each_up_layer # initial upsampling layers self.conv_pre = weight_norm(Conv1d(in_channels, upsample_initial_channel, 7, 1, padding=3)) resblock = ResBlock1 if resblock_type == "1" else ResBlock2 # upsampling layers self.ups = nn.ModuleList() for i, (u, k) in enumerate(zip(upsample_factors, upsample_kernel_sizes)): self.ups.append( weight_norm( ConvTranspose1d( upsample_initial_channel // (2**i), upsample_initial_channel // (2 ** (i + 1)), k, u, padding=(k - u) // 2, ) ) ) # MRF blocks self.resblocks = nn.ModuleList() for i in range(len(self.ups)): ch = upsample_initial_channel // (2 ** (i + 1)) for _, (k, d) in enumerate(zip(resblock_kernel_sizes, resblock_dilation_sizes)): self.resblocks.append(resblock(ch, k, d)) # post convolution layer self.conv_post = weight_norm(Conv1d(ch, out_channels, 7, 1, padding=3, bias=conv_post_bias)) if cond_channels > 0: self.cond_layer = nn.Conv1d(cond_channels, upsample_initial_channel, 1) if not conv_pre_weight_norm: remove_parametrizations(self.conv_pre, "weight") if not conv_post_weight_norm: remove_parametrizations(self.conv_post, "weight") if self.cond_in_each_up_layer: self.conds = nn.ModuleList() for i in range(len(self.ups)): ch = upsample_initial_channel // (2 ** (i + 1)) self.conds.append(nn.Conv1d(cond_channels, ch, 1)) def forward(self, x, g=None): """ Args: x (Tensor): feature input tensor. g (Tensor): global conditioning input tensor. Returns: Tensor: output waveform. Shapes: x: [B, C, T] Tensor: [B, 1, T] """ o = self.conv_pre(x) if hasattr(self, "cond_layer"): o = o + self.cond_layer(g) for i in range(self.num_upsamples): o = F.leaky_relu(o, LRELU_SLOPE) o = self.ups[i](o) if self.cond_in_each_up_layer: o = o + self.conds[i](g) z_sum = None for j in range(self.num_kernels): if z_sum is None: z_sum = self.resblocks[i * self.num_kernels + j](o) else: z_sum += self.resblocks[i * self.num_kernels + j](o) o = z_sum / self.num_kernels o = F.leaky_relu(o) o = self.conv_post(o) o = torch.tanh(o) return o @torch.no_grad() def inference(self, c): """ Args: x (Tensor): conditioning input tensor. Returns: Tensor: output waveform. Shapes: x: [B, C, T] Tensor: [B, 1, T] """ c = c.to(self.conv_pre.weight.device) c = torch.nn.functional.pad(c, (self.inference_padding, self.inference_padding), "replicate") return self.forward(c) def remove_weight_norm(self): print("Removing weight norm...") for l in self.ups: remove_parametrizations(l, "weight") for l in self.resblocks: l.remove_weight_norm() remove_parametrizations(self.conv_pre, "weight") remove_parametrizations(self.conv_post, "weight") def load_checkpoint( self, config, checkpoint_path, eval=False, cache=False ): # pylint: disable=unused-argument, redefined-builtin state = torch.load(checkpoint_path, map_location=torch.device("cpu")) self.load_state_dict(state["model"]) if eval: self.eval() assert not self.training self.remove_weight_norm() class SELayer(nn.Module): def __init__(self, channel, reduction=8): super(SELayer, self).__init__() self.avg_pool = nn.AdaptiveAvgPool2d(1) self.fc = nn.Sequential( nn.Linear(channel, channel // reduction), nn.ReLU(inplace=True), nn.Linear(channel // reduction, channel), nn.Sigmoid(), ) def forward(self, x): b, c, _, _ = x.size() y = self.avg_pool(x).view(b, c) y = self.fc(y).view(b, c, 1, 1) return x * y class SEBasicBlock(nn.Module): expansion = 1 def __init__(self, inplanes, planes, stride=1, downsample=None, reduction=8): super(SEBasicBlock, self).__init__() self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=3, stride=stride, padding=1, bias=False) self.bn1 = nn.BatchNorm2d(planes) self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, padding=1, bias=False) self.bn2 = nn.BatchNorm2d(planes) self.relu = nn.ReLU(inplace=True) self.se = SELayer(planes, reduction) self.downsample = downsample self.stride = stride def forward(self, x): residual = x out = self.conv1(x) out = self.relu(out) out = self.bn1(out) out = self.conv2(out) out = self.bn2(out) out = self.se(out) if self.downsample is not None: residual = self.downsample(x) out += residual out = self.relu(out) return out def set_init_dict(model_dict, checkpoint_state, c): # Partial initialization: if there is a mismatch with new and old layer, it is skipped. for k, v in checkpoint_state.items(): if k not in model_dict: print(" | > Layer missing in the model definition: {}".format(k)) # 1. filter out unnecessary keys pretrained_dict = {k: v for k, v in checkpoint_state.items() if k in model_dict} # 2. filter out different size layers pretrained_dict = {k: v for k, v in pretrained_dict.items() if v.numel() == model_dict[k].numel()} # 3. skip reinit layers if c.has("reinit_layers") and c.reinit_layers is not None: for reinit_layer_name in c.reinit_layers: pretrained_dict = {k: v for k, v in pretrained_dict.items() if reinit_layer_name not in k} # 4. overwrite entries in the existing state dict model_dict.update(pretrained_dict) print(" | > {} / {} layers are restored.".format(len(pretrained_dict), len(model_dict))) return model_dict class PreEmphasis(nn.Module): def __init__(self, coefficient=0.97): super().__init__() self.coefficient = coefficient self.register_buffer("filter", torch.FloatTensor([-self.coefficient, 1.0]).unsqueeze(0).unsqueeze(0)) def forward(self, x): assert len(x.size()) == 2 x = torch.nn.functional.pad(x.unsqueeze(1), (1, 0), "reflect") return torch.nn.functional.conv1d(x, self.filter).squeeze(1) class ResNetSpeakerEncoder(nn.Module): """This is copied from 🐸TTS to remove it from the dependencies.""" # pylint: disable=W0102 def __init__( self, input_dim=64, proj_dim=512, layers=[3, 4, 6, 3], num_filters=[32, 64, 128, 256], encoder_type="ASP", log_input=False, use_torch_spec=False, audio_config=None, ): super(ResNetSpeakerEncoder, self).__init__() self.encoder_type = encoder_type self.input_dim = input_dim self.log_input = log_input self.use_torch_spec = use_torch_spec self.audio_config = audio_config self.proj_dim = proj_dim self.conv1 = nn.Conv2d(1, num_filters[0], kernel_size=3, stride=1, padding=1) self.relu = nn.ReLU(inplace=True) self.bn1 = nn.BatchNorm2d(num_filters[0]) self.inplanes = num_filters[0] self.layer1 = self.create_layer(SEBasicBlock, num_filters[0], layers[0]) self.layer2 = self.create_layer(SEBasicBlock, num_filters[1], layers[1], stride=(2, 2)) self.layer3 = self.create_layer(SEBasicBlock, num_filters[2], layers[2], stride=(2, 2)) self.layer4 = self.create_layer(SEBasicBlock, num_filters[3], layers[3], stride=(2, 2)) self.instancenorm = nn.InstanceNorm1d(input_dim) if self.use_torch_spec: self.torch_spec = torch.nn.Sequential( PreEmphasis(audio_config["preemphasis"]), torchaudio.transforms.MelSpectrogram( sample_rate=audio_config["sample_rate"], n_fft=audio_config["fft_size"], win_length=audio_config["win_length"], hop_length=audio_config["hop_length"], window_fn=torch.hamming_window, n_mels=audio_config["num_mels"], ), ) else: self.torch_spec = None outmap_size = int(self.input_dim / 8) self.attention = nn.Sequential( nn.Conv1d(num_filters[3] * outmap_size, 128, kernel_size=1), nn.ReLU(), nn.BatchNorm1d(128), nn.Conv1d(128, num_filters[3] * outmap_size, kernel_size=1), nn.Softmax(dim=2), ) if self.encoder_type == "SAP": out_dim = num_filters[3] * outmap_size elif self.encoder_type == "ASP": out_dim = num_filters[3] * outmap_size * 2 else: raise ValueError("Undefined encoder") self.fc = nn.Linear(out_dim, proj_dim) self._init_layers() def _init_layers(self): for m in self.modules(): if isinstance(m, nn.Conv2d): nn.init.kaiming_normal_(m.weight, mode="fan_out", nonlinearity="relu") elif isinstance(m, nn.BatchNorm2d): nn.init.constant_(m.weight, 1) nn.init.constant_(m.bias, 0) def create_layer(self, block, planes, blocks, stride=1): downsample = None if stride != 1 or self.inplanes != planes * block.expansion: downsample = nn.Sequential( nn.Conv2d(self.inplanes, planes * block.expansion, kernel_size=1, stride=stride, bias=False), nn.BatchNorm2d(planes * block.expansion), ) layers = [] layers.append(block(self.inplanes, planes, stride, downsample)) self.inplanes = planes * block.expansion for _ in range(1, blocks): layers.append(block(self.inplanes, planes)) return nn.Sequential(*layers) # pylint: disable=R0201 def new_parameter(self, *size): out = nn.Parameter(torch.FloatTensor(*size)) nn.init.xavier_normal_(out) return out def forward(self, x, l2_norm=False): """Forward pass of the model. Args: x (Tensor): Raw waveform signal or spectrogram frames. If input is a waveform, `torch_spec` must be `True` to compute the spectrogram on-the-fly. l2_norm (bool): Whether to L2-normalize the outputs. Shapes: - x: :math:`(N, 1, T_{in})` or :math:`(N, D_{spec}, T_{in})` """ x.squeeze_(1) # if you torch spec compute it otherwise use the mel spec computed by the AP if self.use_torch_spec: x = self.torch_spec(x) if self.log_input: x = (x + 1e-6).log() x = self.instancenorm(x).unsqueeze(1) x = self.conv1(x) x = self.relu(x) x = self.bn1(x) x = self.layer1(x) x = self.layer2(x) x = self.layer3(x) x = self.layer4(x) x = x.reshape(x.size()[0], -1, x.size()[-1]) w = self.attention(x) if self.encoder_type == "SAP": x = torch.sum(x * w, dim=2) elif self.encoder_type == "ASP": mu = torch.sum(x * w, dim=2) sg = torch.sqrt((torch.sum((x**2) * w, dim=2) - mu**2).clamp(min=1e-5)) x = torch.cat((mu, sg), 1) x = x.view(x.size()[0], -1) x = self.fc(x) if l2_norm: x = torch.nn.functional.normalize(x, p=2, dim=1) return x def load_checkpoint( self, checkpoint_path: str, eval: bool = False, use_cuda: bool = False, criterion=None, cache=False, ): state = load_fsspec(checkpoint_path, map_location=torch.device("cpu"), cache=cache) try: self.load_state_dict(state["model"]) print(" > Model fully restored. ") except (KeyError, RuntimeError) as error: # If eval raise the error if eval: raise error print(" > Partial model initialization.") model_dict = self.state_dict() model_dict = set_init_dict(model_dict, state["model"]) self.load_state_dict(model_dict) del model_dict # load the criterion for restore_path if criterion is not None and "criterion" in state: try: criterion.load_state_dict(state["criterion"]) except (KeyError, RuntimeError) as error: print(" > Criterion load ignored because of:", error) if use_cuda: self.cuda() if criterion is not None: criterion = criterion.cuda() if eval: self.eval() assert not self.training if not eval: return criterion, state["step"] return criterion class HifiDecoder(torch.nn.Module): def __init__( self, input_sample_rate=22050, output_sample_rate=24000, output_hop_length=256, ar_mel_length_compression=1024, decoder_input_dim=1024, resblock_type_decoder="1", resblock_dilation_sizes_decoder=[[1, 3, 5], [1, 3, 5], [1, 3, 5]], resblock_kernel_sizes_decoder=[3, 7, 11], upsample_rates_decoder=[8, 8, 2, 2], upsample_initial_channel_decoder=512, upsample_kernel_sizes_decoder=[16, 16, 4, 4], d_vector_dim=512, cond_d_vector_in_each_upsampling_layer=True, speaker_encoder_audio_config={ "fft_size": 512, "win_length": 400, "hop_length": 160, "sample_rate": 16000, "preemphasis": 0.97, "num_mels": 64, }, ): super().__init__() self.input_sample_rate = input_sample_rate self.output_sample_rate = output_sample_rate self.output_hop_length = output_hop_length self.ar_mel_length_compression = ar_mel_length_compression self.speaker_encoder_audio_config = speaker_encoder_audio_config self.waveform_decoder = HifiganGenerator( decoder_input_dim, 1, resblock_type_decoder, resblock_dilation_sizes_decoder, resblock_kernel_sizes_decoder, upsample_kernel_sizes_decoder, upsample_initial_channel_decoder, upsample_rates_decoder, inference_padding=0, cond_channels=d_vector_dim, conv_pre_weight_norm=False, conv_post_weight_norm=False, conv_post_bias=False, cond_in_each_up_layer=cond_d_vector_in_each_upsampling_layer, ) self.speaker_encoder = ResNetSpeakerEncoder( input_dim=64, proj_dim=512, log_input=True, use_torch_spec=True, audio_config=speaker_encoder_audio_config, ) @property def device(self): return next(self.parameters()).device def forward(self, latents, g=None): """ Args: x (Tensor): feature input tensor (GPT latent). g (Tensor): global conditioning input tensor. Returns: Tensor: output waveform. Shapes: x: [B, C, T] Tensor: [B, 1, T] """ z = torch.nn.functional.interpolate( latents.transpose(1, 2), scale_factor=[self.ar_mel_length_compression / self.output_hop_length], mode="linear", ).squeeze(1) # upsample to the right sr if self.output_sample_rate != self.input_sample_rate: z = torch.nn.functional.interpolate( z, scale_factor=[self.output_sample_rate / self.input_sample_rate], mode="linear", ).squeeze(0) o = self.waveform_decoder(z, g=g) return o @torch.no_grad() def inference(self, c, g): """ Args: x (Tensor): feature input tensor (GPT latent). g (Tensor): global conditioning input tensor. Returns: Tensor: output waveform. Shapes: x: [B, C, T] Tensor: [B, 1, T] """ return self.forward(c, g=g) def load_checkpoint(self, checkpoint_path, eval=False): # pylint: disable=unused-argument, redefined-builtin state = load_fsspec(checkpoint_path, map_location=torch.device("cpu")) # remove unused keys state = state["model"] states_keys = list(state.keys()) for key in states_keys: if "waveform_decoder." not in key and "speaker_encoder." not in key: del state[key] self.load_state_dict(state) if eval: self.eval() assert not self.training self.waveform_decoder.remove_weight_norm()