import json import numpy as np import torch from huggan.pytorch.lightweight_gan.lightweight_gan import LightweightGAN from huggingface_hub import hf_hub_download CONFIG_NAME = "config.json" revision = None cache_dir = None force_download = False proxies = None resume_download = False local_files_only = False token = None def carga_modelo(nombre_modelo="ceyda/butterfly_cropped_uniq1K_512", model_version=None): # Load the config config_file = hf_hub_download( repo_id=str(nombre_modelo), filename=CONFIG_NAME, revision=revision, cache_dir=cache_dir, force_download=force_download, proxies=proxies, resume_download=resume_download, token=token, local_files_only=local_files_only, ) with open(config_file, "r", encoding="utf-8") as f: config = json.load(f) gan = LightweightGAN(latent_dim=256, image_size=512) gan = gan._from_pretrained( model_id=str(nombre_modelo), revision=revision, cache_dir=cache_dir, force_download=force_download, proxies=proxies, resume_download=resume_download, local_files_only=local_files_only, token=token, use_auth_token=False, config=config, # usually in **model_kwargs ) gan.eval() return gan def genera(gan, batch_size=1): with torch.no_grad(): ims = gan.G(torch.randn(batch_size, gan.latent_dim)).clamp(0.0, 1.0) * 255 ims = ims.permute(0,2,3,1).detach().cpu().numpy().astype(np.uint8) return ims