Salvatore Rossitto commited on
Commit
e8f1b7a
·
1 Parent(s): f1d36b6

fixes to prompt message

Browse files
Files changed (4) hide show
  1. RBotReloaded.py +54 -28
  2. agent_llama_ui.py +2 -4
  3. requirements.txt +2 -2
  4. start_agent.bat +1 -1
RBotReloaded.py CHANGED
@@ -33,14 +33,40 @@ from diffusers import StableDiffusionPipeline, StableDiffusionImg2ImgPipeline #
33
  from typing import Any, Dict, List
34
  import torch
35
  from diffusers.pipelines.stable_diffusion.convert_from_ckpt import download_from_original_stable_diffusion_ckpt
 
36
 
37
  # Config
38
  EMBD_CHUNK_SIZE = 512
39
  AI_NAME = "Agent Llama"
40
  USER_NAME = "Buddy"
 
41
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
42
  # Helper to load LM
43
- def create_llm(model_id="./models/mistral-7b-instruct-v0.1.Q4_K_M.gguf", load_4bit=False, load_8bit=False, ctx_len = 8192, temperature=0.5, top_p=0.95):
44
  if (model_id.startswith("http")):
45
  print(f"Creating TextGen LLM base_url:{model_id}")
46
  return TextGen(model_url=model_id, callbacks=[StreamingStdOutCallbackHandler()])
@@ -228,34 +254,36 @@ class RBotAgent:
228
  formatted_history = get_buffer_string(chat_history, human_prefix="USER")
229
 
230
  prompt = f"""
231
- EXAMPLE 1:
232
  USER: Find me a recipe for chocolate chip cookies.
233
  AI: SearchAndReply("chocolate chip cookies recipe", 5)
234
 
235
- EXAMPLE 2:
236
  USER: Show me pictures of cute puppies.
237
  AI: ImageGenerator("cute puppies", 512, 512)
238
- EXAMPLE 3:
 
239
  USER: Explain the concept of blockchain.
240
  AI: KnowledgeBaseQuery("Explain blockchain")
241
 
242
- EXAMPLE 4:
243
  USER: Find me recent news about cryptocurrency.
244
  AI: SearchAndReply("recent cryptocurrency news")
245
 
246
- EXAMPLE 5:
247
  USER: Can you calculate the factorial of 5?
248
  AI: Calculator("factorial(5)")
249
 
250
- ###REAL CONVERSATION:\n
251
- SYS:Today is {str(datetime.now().date())},
252
- You are {AI_NAME} a smart and helpful AI assistant with access to external tools and knowledge.
253
- Please reply to the user with a truth and useful response, if you do not know the answer or you are not sure or you need more recent informations, delegate the task replying with ActionName(action_input) with the most appropriate of the available actions (you call them like functions).\nCurrent Conversation History:
254
 
255
- ###AVAILABLE TOOL ACTIONS
 
 
256
  {self.tools_prompt()}
257
 
258
- {formatted_history}
259
  USER: {input}
260
  AI:
261
  """
@@ -283,34 +311,32 @@ AI:
283
  if match[0].strip().lower() in tool_names:
284
  action_name = match[0].strip().lower()
285
  action_input = match[1].strip().replace("query_params", "").strip().replace("()","")
286
- break
287
 
288
  # Try unformatted
289
  if not action_name or not action_input:
290
  lines = output.split("\n")
291
-
292
-
293
  for line in lines:
294
  for tool in tool_names:
295
  if f"{tool}:" in line.lower() or f"{tool}(" in line.lower():
296
  action_name = tool
297
  action_input = line[line.lower().find(tool)+len(tool):].strip().replace("query_params", "").strip().replace("()","")
298
  print(f"Matched unformatted action request. {action_name}:{action_input} from line: {line}")
299
- break
300
 
301
  # Call tool if found
302
  if action_name and action_input:
303
  for tool in self.tools:
304
  if tool.name.lower() in action_name:
305
- print(f"Calling action:{tool.name} with input:{action_input}")
306
- observations.append(f"Calling action:{tool.name} with input:{action_input}")
307
 
308
  params_list = action_input.split(",")
309
  try:
310
- try:
311
- res = tool.func(*params_list)
312
- except:
313
- res = tool.func(action_input)
 
 
314
  except Exception as ex:
315
  res = f"{action_name} execution error: {str(ex)}"
316
 
@@ -361,7 +387,7 @@ class SmartAgent:
361
  self.chat_history.clear()
362
 
363
  # Create image
364
- def createImage(self, prompt, width=512, height=512, denoise_strength=0.75, guidance_scale=7.5, model_id = 'dreamshaper_8.safetensors'):
365
  try:
366
  init_image = None
367
  if (os.path.exists("./image_gen_guide.jpg")):
@@ -372,11 +398,11 @@ class SmartAgent:
372
  if self.text2image_gen_pipe is None:
373
  if torch.cuda.is_available():
374
  print(f"Loading Stable model {model_id} into GPU")
375
- self.text2image_gen_pipe = StableDiffusionPipeline.from_single_file("./models/" + model_id, torch_dtype=torch.float16, verbose=True, use_safetensors=True)
376
  self.text2image_gen_pipe = self.text2image_gen_pipe.to("cuda")
377
  else:
378
  print(f"Loading Stable model {model_id} into CPU")
379
- self.text2image_gen_pipe = StableDiffusionPipeline.from_single_file("./models/" + model_id, torch_dtype=torch.float32, verbose=True, use_safetensors=True)
380
  self.text2image_gen_pipe = self.text2image_gen_pipe.to("cpu")
381
  print("generating image from promt...")
382
  images = self.text2image_gen_pipe(prompt, width=width, height=height).images
@@ -384,11 +410,11 @@ class SmartAgent:
384
  if self.image2image_gen_pipe is None:
385
  if torch.cuda.is_available():
386
  print(f"Loading Stable model {model_id} into GPU")
387
- self.image2image_gen_pipe = StableDiffusionImg2ImgPipeline.from_single_file("./models/" + model_id, torch_dtype=torch.float16, verbose=True, use_safetensors=True)
388
  self.image2image_gen_pipe = self.image2image_gen_pipe.to("cuda")
389
  else:
390
  print(f"Loading Stable model {model_id} into CPU")
391
- self.image2image_gen_pipe = StableDiffusionImg2ImgPipeline.from_single_file("./models/" + model_id, torch_dtype=torch.float32, verbose=True, use_safetensors=True)
392
  self.image2image_gen_pipe = self.image2image_gen_pipe.to("cpu")
393
  print("generating image from promt+image...")
394
  init_image = init_image.convert("RGB")
@@ -404,7 +430,7 @@ class SmartAgent:
404
  paths.append(file_path)
405
  return f"Generated images from prompt \"{prompt}\" saved to files: {', '.join(paths)}"
406
  except Exception as e:
407
- print(f"error in createImageLocal: {e}")
408
  return "Unable to generate file"
409
 
410
  def load_and_split_documents(self, url, max_depth=2):
 
33
  from typing import Any, Dict, List
34
  import torch
35
  from diffusers.pipelines.stable_diffusion.convert_from_ckpt import download_from_original_stable_diffusion_ckpt
36
+ import inspect
37
 
38
  # Config
39
  EMBD_CHUNK_SIZE = 512
40
  AI_NAME = "Agent Llama"
41
  USER_NAME = "Buddy"
42
+ MODELS_DIR = "models"
43
 
44
+ def validate_and_fix_params(tool_name, params_list):
45
+ try:
46
+ # Create a list to store the validated and fixed parameters
47
+ validated_params = []
48
+ n_param = 0
49
+ while n_param < len(params_list) and len(validated_params) < 1:
50
+ val = str(params_list[n_param]).replace("(", "").replace(")", "").replace("\"", "").replace("#", "").strip()
51
+ n_param = n_param + 1
52
+ if len(val) > 2:
53
+ validated_params.append(val)
54
+
55
+ if (n_param < len(params_list) and tool_name == "ImageGenerator" and len(validated_params) < 3):
56
+ while n_param < len(params_list):
57
+ val = int(str(params_list[n_param]).replace("(", "").replace(")", "").replace("\"", "").replace("#", "").strip())
58
+ n_param = n_param + 1
59
+ if val > 0:
60
+ validated_params.append(val)
61
+
62
+ return validated_params
63
+ except Exception as e:
64
+ # Handle any exceptions that may occur during parameter validation
65
+ print(f"Error parsing params: {str(e)}")
66
+ return []
67
+
68
  # Helper to load LM
69
+ def create_llm(model_id=f"{MODELS_DIR}/mistral-7b-instruct-v0.1.Q4_K_M.gguf", load_4bit=False, load_8bit=False, ctx_len = 8192, temperature=0.5, top_p=0.95):
70
  if (model_id.startswith("http")):
71
  print(f"Creating TextGen LLM base_url:{model_id}")
72
  return TextGen(model_url=model_id, callbacks=[StreamingStdOutCallbackHandler()])
 
254
  formatted_history = get_buffer_string(chat_history, human_prefix="USER")
255
 
256
  prompt = f"""
257
+ ### EXAMPLE 1:
258
  USER: Find me a recipe for chocolate chip cookies.
259
  AI: SearchAndReply("chocolate chip cookies recipe", 5)
260
 
261
+ ### EXAMPLE 2:
262
  USER: Show me pictures of cute puppies.
263
  AI: ImageGenerator("cute puppies", 512, 512)
264
+
265
+ ### EXAMPLE 3:
266
  USER: Explain the concept of blockchain.
267
  AI: KnowledgeBaseQuery("Explain blockchain")
268
 
269
+ ### EXAMPLE 4:
270
  USER: Find me recent news about cryptocurrency.
271
  AI: SearchAndReply("recent cryptocurrency news")
272
 
273
+ ### EXAMPLE 5:
274
  USER: Can you calculate the factorial of 5?
275
  AI: Calculator("factorial(5)")
276
 
277
+ ### CURRENT CONTEXT:\n
278
+ SYS: Today is {str(datetime.now().date())},
279
+ SYS: You are {AI_NAME} a smart and helpful AI assistant with access to external tools and knowledge.
280
+ SYS: Please reply to the user with a truth and useful response, if you do not know the answer or you are not sure or you need more recent informations, delegate the task replying with ActionName(action_input) with the most appropriate of the available actions (you call them like functions).
281
 
282
+ ### CURRENT CONVERSATION:
283
+ {formatted_history}
284
+ SYS: Follow the most current user message, you can reply directly or invoke a valid action from the following available:
285
  {self.tools_prompt()}
286
 
 
287
  USER: {input}
288
  AI:
289
  """
 
311
  if match[0].strip().lower() in tool_names:
312
  action_name = match[0].strip().lower()
313
  action_input = match[1].strip().replace("query_params", "").strip().replace("()","")
314
+ if (action_name and action_input): break
315
 
316
  # Try unformatted
317
  if not action_name or not action_input:
318
  lines = output.split("\n")
 
 
319
  for line in lines:
320
  for tool in tool_names:
321
  if f"{tool}:" in line.lower() or f"{tool}(" in line.lower():
322
  action_name = tool
323
  action_input = line[line.lower().find(tool)+len(tool):].strip().replace("query_params", "").strip().replace("()","")
324
  print(f"Matched unformatted action request. {action_name}:{action_input} from line: {line}")
325
+ if (action_name and action_input): break
326
 
327
  # Call tool if found
328
  if action_name and action_input:
329
  for tool in self.tools:
330
  if tool.name.lower() in action_name:
 
 
331
 
332
  params_list = action_input.split(",")
333
  try:
334
+ print(f"Fixing input for tool {tool.name}, Original params list: {str(params_list)}")
335
+ params_list = validate_and_fix_params(tool.name, params_list)
336
+ print(f"Fixed params list: {str(params_list)}")
337
+ print(f"Calling action:{tool.name} with input:{str(params_list)}")
338
+ observations.append(f"Calling action:{tool.name} with input:{str(params_list)}")
339
+ res = tool.func(*params_list)
340
  except Exception as ex:
341
  res = f"{action_name} execution error: {str(ex)}"
342
 
 
387
  self.chat_history.clear()
388
 
389
  # Create image
390
+ def createImage(self, prompt : str, width : int=512, height : int=512, denoise_strength : float=0.75, guidance_scale: float=7.5, model_id : str= 'dreamshaper_8.safetensors'):
391
  try:
392
  init_image = None
393
  if (os.path.exists("./image_gen_guide.jpg")):
 
398
  if self.text2image_gen_pipe is None:
399
  if torch.cuda.is_available():
400
  print(f"Loading Stable model {model_id} into GPU")
401
+ self.text2image_gen_pipe = StableDiffusionPipeline.from_single_file(f"{MODELS_DIR}/" + model_id, torch_dtype=torch.float16, verbose=True, use_safetensors=True)
402
  self.text2image_gen_pipe = self.text2image_gen_pipe.to("cuda")
403
  else:
404
  print(f"Loading Stable model {model_id} into CPU")
405
+ self.text2image_gen_pipe = StableDiffusionPipeline.from_single_file(f"{MODELS_DIR}/" + model_id, torch_dtype=torch.float32, verbose=True, use_safetensors=True)
406
  self.text2image_gen_pipe = self.text2image_gen_pipe.to("cpu")
407
  print("generating image from promt...")
408
  images = self.text2image_gen_pipe(prompt, width=width, height=height).images
 
410
  if self.image2image_gen_pipe is None:
411
  if torch.cuda.is_available():
412
  print(f"Loading Stable model {model_id} into GPU")
413
+ self.image2image_gen_pipe = StableDiffusionImg2ImgPipeline.from_single_file(f"{MODELS_DIR}/" + model_id, torch_dtype=torch.float16, verbose=True, use_safetensors=True)
414
  self.image2image_gen_pipe = self.image2image_gen_pipe.to("cuda")
415
  else:
416
  print(f"Loading Stable model {model_id} into CPU")
417
+ self.image2image_gen_pipe = StableDiffusionImg2ImgPipeline.from_single_file(f"{MODELS_DIR}/" + model_id, torch_dtype=torch.float32, verbose=True, use_safetensors=True)
418
  self.image2image_gen_pipe = self.image2image_gen_pipe.to("cpu")
419
  print("generating image from promt+image...")
420
  init_image = init_image.convert("RGB")
 
430
  paths.append(file_path)
431
  return f"Generated images from prompt \"{prompt}\" saved to files: {', '.join(paths)}"
432
  except Exception as e:
433
+ print(f"error in createImage: {e}")
434
  return "Unable to generate file"
435
 
436
  def load_and_split_documents(self, url, max_depth=2):
agent_llama_ui.py CHANGED
@@ -7,7 +7,7 @@ import requests
7
  import glob
8
  import json
9
  import shutil
10
- from RBotReloaded import SmartAgent
11
  import time
12
  from PIL import Image
13
  from langchain.schema import AIMessage, HumanMessage
@@ -15,15 +15,13 @@ from langchain.schema import AIMessage, HumanMessage
15
  load_dotenv()
16
 
17
 
18
- default_model = ""
19
  default_context = 8192
20
  default_load_type = "Auto"
21
  default_iterations = 2
22
  default_temperature = 0.5
23
  default_topp = 0.95
24
 
25
- MODELS_DIR = "models"
26
-
27
  @st.cache_resource
28
  def agent(model, temperature, top_p, context_length, load_8bit, load_4bit, max_iterations):
29
  ag = SmartAgent(f"{MODELS_DIR}/{model}" if os.path.exists(f"{MODELS_DIR}/{model}") else model, temp=temperature, top_p=top_p, load_in_4bit=load_4bit, load_in_8bit=load_8bit, ctx_len=context_length, max_iterations=max_iterations) if model else None
 
7
  import glob
8
  import json
9
  import shutil
10
+ from RBotReloaded import SmartAgent, MODELS_DIR
11
  import time
12
  from PIL import Image
13
  from langchain.schema import AIMessage, HumanMessage
 
15
  load_dotenv()
16
 
17
 
18
+ default_model = "mistral-7b-instruct-v0.1.Q4_K_M.gguf"
19
  default_context = 8192
20
  default_load_type = "Auto"
21
  default_iterations = 2
22
  default_temperature = 0.5
23
  default_topp = 0.95
24
 
 
 
25
  @st.cache_resource
26
  def agent(model, temperature, top_p, context_length, load_8bit, load_4bit, max_iterations):
27
  ag = SmartAgent(f"{MODELS_DIR}/{model}" if os.path.exists(f"{MODELS_DIR}/{model}") else model, temp=temperature, top_p=top_p, load_in_4bit=load_4bit, load_in_8bit=load_8bit, ctx_len=context_length, max_iterations=max_iterations) if model else None
requirements.txt CHANGED
@@ -6,6 +6,8 @@ bs4
6
  diffusers
7
  transformers
8
  faiss-cpu
 
 
9
  fastapi
10
  git-python
11
  google-search-results
@@ -41,6 +43,4 @@ torchaudio
41
  #torchaudio==2.0.1+cu117
42
  torchvision
43
  python-dotenv
44
- lxml
45
- ctransformers
46
  omegaconf
 
6
  diffusers
7
  transformers
8
  faiss-cpu
9
+ lxml
10
+ ctransformers
11
  fastapi
12
  git-python
13
  google-search-results
 
43
  #torchaudio==2.0.1+cu117
44
  torchvision
45
  python-dotenv
 
 
46
  omegaconf
start_agent.bat CHANGED
@@ -13,7 +13,7 @@ rem Activate the virtual environment
13
  call %ENV_NAME%\Scripts\activate
14
 
15
  rem Install the required packages from requirements.txt
16
- python -m pip install -r requirements.txt
17
 
18
  rem Run your Streamlit application
19
  python -m streamlit run agent_llama_ui.py
 
13
  call %ENV_NAME%\Scripts\activate
14
 
15
  rem Install the required packages from requirements.txt
16
+ python -m pip install --user -r requirements.txt
17
 
18
  rem Run your Streamlit application
19
  python -m streamlit run agent_llama_ui.py