Spaces:
Sleeping
Sleeping
import gradio as gr | |
import torch | |
import torchvision.transforms as transforms | |
from PIL import Image | |
from torchvision.models import resnet50 | |
import torch.nn as nn | |
# Load model | |
model = resnet50(pretrained=False) | |
model.fc = nn.Linear(model.fc.in_features, 10) | |
model.load_state_dict(torch.load('best_model.pth')) | |
model.eval() | |
# Define classes (for CIFAR-10) | |
classes = ['airplane', 'automobile', 'bird', 'cat', 'deer', | |
'dog', 'frog', 'horse', 'ship', 'truck'] | |
def predict(image): | |
transform = transforms.Compose([ | |
transforms.Resize(224), | |
transforms.ToTensor(), | |
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) | |
]) | |
img_tensor = transform(image).unsqueeze(0) | |
with torch.no_grad(): | |
outputs = model(img_tensor) | |
_, predicted = outputs.max(1) | |
return classes[predicted.item()] | |
# Create Gradio interface | |
iface = gr.Interface( | |
fn=predict, | |
inputs=gr.Image(type="pil"), | |
outputs=gr.Label(num_top_classes=1), | |
examples=[["example1.jpg"], ["example2.jpg"]] | |
) | |
iface.launch() |