Spaces:
Sleeping
Sleeping
Sreekanth Tangirala
commited on
Commit
·
9c8dfb8
1
Parent(s):
22d9eee
remove pth from tracking
Browse files- .gitignore +1 -0
- app.py +55 -32
- upload_to_hub.py +122 -0
.gitignore
CHANGED
@@ -30,6 +30,7 @@ env.bak/
|
|
30 |
venv.bak/
|
31 |
|
32 |
# PyTorch specific
|
|
|
33 |
*.pt
|
34 |
*.pkl
|
35 |
*.onnx
|
|
|
30 |
venv.bak/
|
31 |
|
32 |
# PyTorch specific
|
33 |
+
*.pth
|
34 |
*.pt
|
35 |
*.pkl
|
36 |
*.onnx
|
app.py
CHANGED
@@ -1,41 +1,64 @@
|
|
1 |
-
import
|
2 |
import torch
|
3 |
-
import torchvision.transforms as transforms
|
4 |
from PIL import Image
|
5 |
-
from torchvision.models import resnet50
|
6 |
-
import torch.nn as nn
|
7 |
|
8 |
-
|
9 |
-
|
10 |
-
model
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
|
|
|
|
|
|
|
|
|
|
17 |
|
18 |
-
def predict(
|
19 |
-
|
20 |
-
|
21 |
-
transforms.ToTensor(),
|
22 |
-
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
|
23 |
-
])
|
24 |
|
25 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
|
|
|
27 |
with torch.no_grad():
|
28 |
-
outputs = model(
|
29 |
-
|
30 |
-
|
31 |
-
return
|
|
|
|
|
|
|
|
|
32 |
|
33 |
-
#
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
40 |
|
41 |
-
|
|
|
|
1 |
+
from transformers import AutoModelForImageClassification, AutoFeatureExtractor
|
2 |
import torch
|
|
|
3 |
from PIL import Image
|
|
|
|
|
4 |
|
5 |
+
def load_model_from_hub(repo_id: str):
|
6 |
+
"""
|
7 |
+
Load model from Hugging Face Hub
|
8 |
+
|
9 |
+
Args:
|
10 |
+
repo_id: The repository ID (e.g., 'username/model-name')
|
11 |
+
Returns:
|
12 |
+
model: The loaded model
|
13 |
+
processor: The feature extractor/processor
|
14 |
+
"""
|
15 |
+
# Load model and processor from Hub
|
16 |
+
model = AutoModelForImageClassification.from_pretrained(repo_id)
|
17 |
+
processor = AutoFeatureExtractor.from_pretrained(repo_id)
|
18 |
+
return model, processor
|
19 |
|
20 |
+
def predict(image_path: str, model, processor):
|
21 |
+
"""
|
22 |
+
Make prediction using the loaded model
|
|
|
|
|
|
|
23 |
|
24 |
+
Args:
|
25 |
+
image_path: Path to input image
|
26 |
+
model: Loaded model
|
27 |
+
processor: Feature extractor/processor
|
28 |
+
Returns:
|
29 |
+
prediction: Model prediction
|
30 |
+
"""
|
31 |
+
# Load and preprocess image
|
32 |
+
image = Image.open(image_path)
|
33 |
+
inputs = processor(images=image, return_tensors="pt")
|
34 |
|
35 |
+
# Make prediction
|
36 |
with torch.no_grad():
|
37 |
+
outputs = model(**inputs)
|
38 |
+
predictions = outputs.logits.softmax(-1)
|
39 |
+
|
40 |
+
return predictions
|
41 |
+
|
42 |
+
# Example usage in your Flask/FastAPI app
|
43 |
+
from flask import Flask, request
|
44 |
+
app = Flask(__name__)
|
45 |
|
46 |
+
# Load model at startup
|
47 |
+
model, processor = load_model_from_hub("srtangirala/resnet50-exp")
|
48 |
+
|
49 |
+
@app.route('/predict', methods=['POST'])
|
50 |
+
def predict_endpoint():
|
51 |
+
if 'file' not in request.files:
|
52 |
+
return {'error': 'No file provided'}, 400
|
53 |
+
|
54 |
+
file = request.files['file']
|
55 |
+
image_path = "temp_image.jpg" # You might want to generate a unique filename
|
56 |
+
file.save(image_path)
|
57 |
+
|
58 |
+
predictions = predict(image_path, model, processor)
|
59 |
+
|
60 |
+
# Convert predictions to list and return
|
61 |
+
return {'predictions': predictions.tolist()[0]}
|
62 |
|
63 |
+
if __name__ == '__main__':
|
64 |
+
app.run(debug=True)
|
upload_to_hub.py
ADDED
@@ -0,0 +1,122 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from huggingface_hub import HfApi, login
|
2 |
+
import torch
|
3 |
+
from transformers import AutoModelForImageClassification, AutoFeatureExtractor
|
4 |
+
import json
|
5 |
+
import os
|
6 |
+
|
7 |
+
def upload_model_to_hub(
|
8 |
+
model_path: str,
|
9 |
+
repo_name: str,
|
10 |
+
token: str,
|
11 |
+
num_labels: int,
|
12 |
+
label2id: dict,
|
13 |
+
id2label: dict,
|
14 |
+
model_architecture: str = "resnet50",
|
15 |
+
task: str = "image-classification",
|
16 |
+
):
|
17 |
+
"""
|
18 |
+
Upload a PyTorch model to Hugging Face Hub with proper configuration
|
19 |
+
"""
|
20 |
+
# Login to Hugging Face
|
21 |
+
login(token=token)
|
22 |
+
api = HfApi()
|
23 |
+
|
24 |
+
# Create the repository
|
25 |
+
repo_url = api.create_repo(
|
26 |
+
repo_id=repo_name,
|
27 |
+
exist_ok=True,
|
28 |
+
private=False
|
29 |
+
)
|
30 |
+
|
31 |
+
# Create config.json
|
32 |
+
config = {
|
33 |
+
"architectures": ["ResNetForImageClassification"],
|
34 |
+
"model_type": "resnet",
|
35 |
+
"num_labels": num_labels,
|
36 |
+
"id2label": id2label,
|
37 |
+
"label2id": label2id,
|
38 |
+
"num_channels": 3,
|
39 |
+
"hidden_sizes": [2048],
|
40 |
+
"image_size": [224, 224]
|
41 |
+
}
|
42 |
+
|
43 |
+
# Create feature extractor config
|
44 |
+
feature_extractor = {
|
45 |
+
"image_mean": [0.485, 0.456, 0.406],
|
46 |
+
"image_std": [0.229, 0.224, 0.225],
|
47 |
+
"do_normalize": True,
|
48 |
+
"do_resize": True,
|
49 |
+
"size": 224,
|
50 |
+
"resample": 2
|
51 |
+
}
|
52 |
+
|
53 |
+
# Upload config files
|
54 |
+
api.upload_file(
|
55 |
+
path_or_fileobj=json.dumps(config).encode(),
|
56 |
+
path_in_repo="config.json",
|
57 |
+
repo_id=repo_name,
|
58 |
+
commit_message="Upload model config"
|
59 |
+
)
|
60 |
+
|
61 |
+
api.upload_file(
|
62 |
+
path_or_fileobj=json.dumps(feature_extractor).encode(),
|
63 |
+
path_in_repo="preprocessor_config.json",
|
64 |
+
repo_id=repo_name,
|
65 |
+
commit_message="Upload preprocessor config"
|
66 |
+
)
|
67 |
+
|
68 |
+
# Upload the model file
|
69 |
+
api.upload_file(
|
70 |
+
path_or_fileobj=model_path,
|
71 |
+
path_in_repo="pytorch_model.bin",
|
72 |
+
repo_id=repo_name,
|
73 |
+
commit_message="Upload model weights"
|
74 |
+
)
|
75 |
+
|
76 |
+
# Create and upload model card
|
77 |
+
model_card = f"""
|
78 |
+
---
|
79 |
+
language: en
|
80 |
+
tags:
|
81 |
+
- pytorch
|
82 |
+
- {model_architecture}
|
83 |
+
- {task}
|
84 |
+
---
|
85 |
+
|
86 |
+
# Model Card for {repo_name}
|
87 |
+
|
88 |
+
This model is a fine-tuned version of {model_architecture} for {task}.
|
89 |
+
"""
|
90 |
+
|
91 |
+
api.upload_file(
|
92 |
+
path_or_fileobj=model_card.encode(),
|
93 |
+
path_in_repo="README.md",
|
94 |
+
repo_id=repo_name,
|
95 |
+
commit_message="Upload model card"
|
96 |
+
)
|
97 |
+
|
98 |
+
print(f"Model uploaded successfully to: https://huggingface.co/{repo_name}")
|
99 |
+
|
100 |
+
if __name__ == "__main__":
|
101 |
+
# Get Hugging Face token from environment variable
|
102 |
+
token = os.getenv("HF_TOKEN")
|
103 |
+
if not token:
|
104 |
+
raise ValueError("Please set the HF_TOKEN environment variable")
|
105 |
+
|
106 |
+
# Example label mappings - replace with your actual labels
|
107 |
+
label2id = {
|
108 |
+
"class1": 0,
|
109 |
+
"class2": 1,
|
110 |
+
# ... add all your classes
|
111 |
+
}
|
112 |
+
id2label = {str(v): k for k, v in label2id.items()}
|
113 |
+
|
114 |
+
# Upload the model
|
115 |
+
upload_model_to_hub(
|
116 |
+
model_path="best_model.pth",
|
117 |
+
repo_name="srtangirala/resnet50-exp",
|
118 |
+
token=token,
|
119 |
+
num_labels=len(label2id),
|
120 |
+
label2id=label2id,
|
121 |
+
id2label=id2label
|
122 |
+
)
|