Spaces:
Sleeping
Sleeping
Sreekanth Tangirala
commited on
Commit
·
de2aabe
0
Parent(s):
first commit
Browse files- .gitignore +85 -0
- app.py +40 -0
- model.py +29 -0
- requirements.txt +5 -0
- train.py +128 -0
.gitignore
ADDED
@@ -0,0 +1,85 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Python
|
2 |
+
__pycache__/
|
3 |
+
*.py[cod]
|
4 |
+
*$py.class
|
5 |
+
*.so
|
6 |
+
.Python
|
7 |
+
build/
|
8 |
+
develop-eggs/
|
9 |
+
dist/
|
10 |
+
downloads/
|
11 |
+
eggs/
|
12 |
+
.eggs/
|
13 |
+
lib/
|
14 |
+
lib64/
|
15 |
+
parts/
|
16 |
+
sdist/
|
17 |
+
var/
|
18 |
+
wheels/
|
19 |
+
*.egg-info/
|
20 |
+
.installed.cfg
|
21 |
+
*.egg
|
22 |
+
|
23 |
+
# Virtual Environment
|
24 |
+
venv/
|
25 |
+
env/
|
26 |
+
ENV/
|
27 |
+
.env
|
28 |
+
.venv
|
29 |
+
env.bak/
|
30 |
+
venv.bak/
|
31 |
+
|
32 |
+
# PyTorch specific
|
33 |
+
*.pth
|
34 |
+
*.pt
|
35 |
+
*.pkl
|
36 |
+
*.onnx
|
37 |
+
data/
|
38 |
+
runs/
|
39 |
+
checkpoints/
|
40 |
+
|
41 |
+
# IDE specific
|
42 |
+
.idea/
|
43 |
+
.vscode/
|
44 |
+
*.swp
|
45 |
+
*.swo
|
46 |
+
.DS_Store
|
47 |
+
|
48 |
+
# Jupyter Notebook
|
49 |
+
.ipynb_checkpoints
|
50 |
+
*.ipynb
|
51 |
+
|
52 |
+
# Logs and databases
|
53 |
+
*.log
|
54 |
+
*.sqlite
|
55 |
+
logs/
|
56 |
+
wandb/
|
57 |
+
|
58 |
+
# Distribution / packaging
|
59 |
+
.Python
|
60 |
+
build/
|
61 |
+
develop-eggs/
|
62 |
+
dist/
|
63 |
+
downloads/
|
64 |
+
eggs/
|
65 |
+
.eggs/
|
66 |
+
lib/
|
67 |
+
lib64/
|
68 |
+
parts/
|
69 |
+
sdist/
|
70 |
+
var/
|
71 |
+
wheels/
|
72 |
+
*.egg-info/
|
73 |
+
.installed.cfg
|
74 |
+
*.egg
|
75 |
+
|
76 |
+
# Unit test / coverage reports
|
77 |
+
htmlcov/
|
78 |
+
.tox/
|
79 |
+
.coverage
|
80 |
+
.coverage.*
|
81 |
+
.cache
|
82 |
+
nosetests.xml
|
83 |
+
coverage.xml
|
84 |
+
*.cover
|
85 |
+
.hypothesis/
|
app.py
ADDED
@@ -0,0 +1,40 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import torch
|
3 |
+
import torchvision.transforms as transforms
|
4 |
+
from PIL import Image
|
5 |
+
from torchvision.models import resnet50
|
6 |
+
|
7 |
+
# Load model
|
8 |
+
model = resnet50(pretrained=False)
|
9 |
+
model.fc = nn.Linear(model.fc.in_features, 10)
|
10 |
+
model.load_state_dict(torch.load('best_model.pth'))
|
11 |
+
model.eval()
|
12 |
+
|
13 |
+
# Define classes (for CIFAR-10)
|
14 |
+
classes = ['airplane', 'automobile', 'bird', 'cat', 'deer',
|
15 |
+
'dog', 'frog', 'horse', 'ship', 'truck']
|
16 |
+
|
17 |
+
def predict(image):
|
18 |
+
transform = transforms.Compose([
|
19 |
+
transforms.Resize(224),
|
20 |
+
transforms.ToTensor(),
|
21 |
+
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
|
22 |
+
])
|
23 |
+
|
24 |
+
img_tensor = transform(image).unsqueeze(0)
|
25 |
+
|
26 |
+
with torch.no_grad():
|
27 |
+
outputs = model(img_tensor)
|
28 |
+
_, predicted = outputs.max(1)
|
29 |
+
|
30 |
+
return classes[predicted.item()]
|
31 |
+
|
32 |
+
# Create Gradio interface
|
33 |
+
iface = gr.Interface(
|
34 |
+
fn=predict,
|
35 |
+
inputs=gr.Image(type="pil"),
|
36 |
+
outputs=gr.Label(num_top_classes=1),
|
37 |
+
examples=[["example1.jpg"], ["example2.jpg"]]
|
38 |
+
)
|
39 |
+
|
40 |
+
iface.launch()
|
model.py
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
from torchvision.models import resnet50
|
4 |
+
|
5 |
+
def get_model(num_classes):
|
6 |
+
"""
|
7 |
+
Initialize a ResNet50 model from scratch
|
8 |
+
Args:
|
9 |
+
num_classes (int): Number of output classes
|
10 |
+
Returns:
|
11 |
+
model: ResNet50 model with custom final layer
|
12 |
+
"""
|
13 |
+
model = resnet50(pretrained=False)
|
14 |
+
model.fc = nn.Linear(model.fc.in_features, num_classes)
|
15 |
+
return model
|
16 |
+
|
17 |
+
def save_model(model, path):
|
18 |
+
"""
|
19 |
+
Save model state dict
|
20 |
+
"""
|
21 |
+
torch.save(model.state_dict(), path)
|
22 |
+
|
23 |
+
def load_model(num_classes, path):
|
24 |
+
"""
|
25 |
+
Load a saved model
|
26 |
+
"""
|
27 |
+
model = get_model(num_classes)
|
28 |
+
model.load_state_dict(torch.load(path))
|
29 |
+
return model
|
requirements.txt
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
--find-links https://download.pytorch.org/whl/torch_stable.html
|
2 |
+
torch>=2.1.0
|
3 |
+
torchvision>=0.16.0
|
4 |
+
gradio==4.19.2
|
5 |
+
numpy==1.24.3
|
train.py
ADDED
@@ -0,0 +1,128 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
import torch.optim as optim
|
4 |
+
import torchvision
|
5 |
+
import torchvision.transforms as transforms
|
6 |
+
from torch.utils.data import DataLoader, Subset
|
7 |
+
from model import get_model, save_model
|
8 |
+
from tqdm import tqdm
|
9 |
+
|
10 |
+
def get_transforms():
|
11 |
+
"""
|
12 |
+
Define the image transformations
|
13 |
+
"""
|
14 |
+
return transforms.Compose([
|
15 |
+
transforms.Resize(224),
|
16 |
+
transforms.ToTensor(),
|
17 |
+
transforms.Normalize(mean=[0.485, 0.456, 0.406],
|
18 |
+
std=[0.229, 0.224, 0.225])
|
19 |
+
])
|
20 |
+
|
21 |
+
def get_data(subset_size=None):
|
22 |
+
"""
|
23 |
+
Load and prepare the dataset
|
24 |
+
Args:
|
25 |
+
subset_size (int): If provided, return only a subset of data
|
26 |
+
"""
|
27 |
+
transform = get_transforms()
|
28 |
+
trainset = torchvision.datasets.CIFAR10(
|
29 |
+
root='./data',
|
30 |
+
train=True,
|
31 |
+
download=True,
|
32 |
+
transform=transform
|
33 |
+
)
|
34 |
+
|
35 |
+
if subset_size:
|
36 |
+
indices = torch.randperm(len(trainset))[:subset_size]
|
37 |
+
trainset = Subset(trainset, indices)
|
38 |
+
|
39 |
+
trainloader = DataLoader(
|
40 |
+
trainset,
|
41 |
+
batch_size=32,
|
42 |
+
shuffle=True,
|
43 |
+
num_workers=2
|
44 |
+
)
|
45 |
+
|
46 |
+
return trainloader
|
47 |
+
|
48 |
+
def train_model(model, trainloader, epochs=100, device='cuda'):
|
49 |
+
"""
|
50 |
+
Train the model
|
51 |
+
Args:
|
52 |
+
model: The ResNet50 model
|
53 |
+
trainloader: DataLoader for training data
|
54 |
+
epochs (int): Number of epochs to train
|
55 |
+
device (str): Device to train on ('cuda' or 'cpu')
|
56 |
+
"""
|
57 |
+
model = model.to(device)
|
58 |
+
criterion = nn.CrossEntropyLoss()
|
59 |
+
optimizer = optim.Adam(model.parameters(), lr=0.001)
|
60 |
+
scheduler = optim.lr_scheduler.ReduceLROnPlateau(
|
61 |
+
optimizer,
|
62 |
+
'max',
|
63 |
+
patience=5
|
64 |
+
)
|
65 |
+
|
66 |
+
best_acc = 0.0
|
67 |
+
|
68 |
+
# Create epoch progress bar
|
69 |
+
epoch_pbar = tqdm(range(epochs), desc='Training')
|
70 |
+
|
71 |
+
for epoch in epoch_pbar:
|
72 |
+
model.train()
|
73 |
+
running_loss = 0.0
|
74 |
+
correct = 0
|
75 |
+
total = 0
|
76 |
+
|
77 |
+
# Create batch progress bar
|
78 |
+
batch_pbar = tqdm(trainloader, leave=False, desc=f'Epoch {epoch+1}')
|
79 |
+
|
80 |
+
for inputs, labels in batch_pbar:
|
81 |
+
inputs, labels = inputs.to(device), labels.to(device)
|
82 |
+
|
83 |
+
optimizer.zero_grad()
|
84 |
+
outputs = model(inputs)
|
85 |
+
loss = criterion(outputs, labels)
|
86 |
+
loss.backward()
|
87 |
+
optimizer.step()
|
88 |
+
|
89 |
+
running_loss += loss.item()
|
90 |
+
_, predicted = outputs.max(1)
|
91 |
+
total += labels.size(0)
|
92 |
+
correct += predicted.eq(labels).sum().item()
|
93 |
+
|
94 |
+
# Update batch progress bar
|
95 |
+
batch_pbar.set_postfix({'loss': f'{loss.item():.3f}'})
|
96 |
+
|
97 |
+
epoch_acc = 100. * correct / total
|
98 |
+
avg_loss = running_loss/len(trainloader)
|
99 |
+
|
100 |
+
# Update epoch progress bar
|
101 |
+
epoch_pbar.set_postfix({
|
102 |
+
'loss': f'{avg_loss:.3f}',
|
103 |
+
'accuracy': f'{epoch_acc:.2f}%'
|
104 |
+
})
|
105 |
+
|
106 |
+
scheduler.step(epoch_acc)
|
107 |
+
|
108 |
+
if epoch_acc > best_acc:
|
109 |
+
best_acc = epoch_acc
|
110 |
+
save_model(model, 'best_model.pth')
|
111 |
+
|
112 |
+
if epoch_acc > 70:
|
113 |
+
print(f"\nReached target accuracy of 70%!")
|
114 |
+
break
|
115 |
+
|
116 |
+
if __name__ == "__main__":
|
117 |
+
# Set device
|
118 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
119 |
+
print(f"Using device: {device}")
|
120 |
+
|
121 |
+
# Get data
|
122 |
+
trainloader = get_data(subset_size=5000) # Using subset for initial testing
|
123 |
+
|
124 |
+
# Initialize model
|
125 |
+
model = get_model(num_classes=10)
|
126 |
+
|
127 |
+
# Train model
|
128 |
+
train_model(model, trainloader, epochs=10, device=device)
|