Sreekanth Tangirala commited on
Commit
ed738e7
·
1 Parent(s): d42cc33

updated Readme and logs md

Browse files
Files changed (2) hide show
  1. Readme.md +48 -0
  2. logs/training_log_20250104_071323.md +21 -51
Readme.md ADDED
@@ -0,0 +1,48 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # ResNet50 Model Implementation
2
+
3
+ This implementation provides a customizable ResNet50 model for image classification tasks.
4
+
5
+ ## Model Architecture
6
+
7
+ The model uses the ResNet50 architecture, which is a deep convolutional neural network with 50 layers. Key features include:
8
+
9
+ - Based on the standard ResNet50 architecture
10
+ - Customizable number of output classes
11
+ - Modified final fully connected layer to match the desired number of classes
12
+ - Initialized from scratch (no pre-training)
13
+
14
+ ## Functions
15
+
16
+ ### `get_model(num_classes)`
17
+ Initializes a new ResNet50 model with a custom number of output classes.
18
+ - **Input**: Number of classes (integer)
19
+ - **Output**: Initialized ResNet50 model
20
+ - **Note**: The model is initialized without pre-trained weights
21
+
22
+ ### `save_model(model, path)`
23
+ Saves the model's state dictionary to a specified path.
24
+ - **Input**:
25
+ - model: Trained PyTorch model
26
+ - path: File path for saving the model
27
+
28
+ ### `load_model(num_classes, path)`
29
+ Loads a previously saved model.
30
+ - **Input**:
31
+ - num_classes: Number of output classes
32
+ - path: Path to the saved model file
33
+ - **Output**: Loaded ResNet50 model
34
+
35
+ ## Usage Example
36
+
37
+ ```python
38
+ model = get_model(num_classes=1000)
39
+ save_model(model, 'model.pth')
40
+ loaded_model = load_model(num_classes=1000, path='model.pth')
41
+ ```
42
+
43
+ #Training Logs
44
+ ![Trained on AWS](https://github.com/srtangirala/resnet-training/blob/main/logs/images/aws.png)
45
+ ![Logs 1](https://github.com/srtangirala/resnet-training/blob/main/logs/images/logs-1.png)
46
+ ![Logs 2](https://github.com/srtangirala/resnet-training/blob/main/logs/images/logs-2.png)
47
+
48
+
logs/training_log_20250104_071323.md CHANGED
@@ -1,56 +1,26 @@
1
  # Training Log
2
 
3
- | Epoch | Train Loss | Train Acc | Test Acc | Best Acc |
4
- |-------|------------|-----------|-----------|----------|
5
- | 1 | 2.101 | 21.95% | 29.35% | 0.00% |
6
- **New best accuracy achieved at epoch 1**
7
-
8
- | 2 | 1.875 | 30.13% | 34.70% | 29.35% |
9
- **New best accuracy achieved at epoch 2**
10
-
11
- | 3 | 1.778 | 34.90% | 34.60% | 34.70% |
12
- | 4 | 1.714 | 36.99% | 40.80% | 34.70% |
13
- **New best accuracy achieved at epoch 4**
14
-
15
- | 5 | 1.646 | 40.05% | 40.15% | 40.80% |
16
- | 6 | 1.587 | 42.39% | 43.00% | 40.80% |
17
- **New best accuracy achieved at epoch 6**
18
-
19
- | 7 | 1.513 | 45.59% | 47.30% | 43.00% |
20
- **New best accuracy achieved at epoch 7**
21
-
22
- | 8 | 1.436 | 48.44% | 51.85% | 47.30% |
23
- **New best accuracy achieved at epoch 8**
24
-
25
- | 9 | 1.347 | 51.07% | 53.50% | 51.85% |
26
- **New best accuracy achieved at epoch 9**
27
-
28
- | 10 | 1.294 | 53.89% | 55.95% | 53.50% |
29
- **New best accuracy achieved at epoch 10**
30
-
31
- | 11 | 1.220 | 56.07% | 55.75% | 55.95% |
32
- | 12 | 1.173 | 58.45% | 56.25% | 55.95% |
33
- **New best accuracy achieved at epoch 12**
34
-
35
- | 13 | 1.125 | 60.20% | 59.00% | 56.25% |
36
- **New best accuracy achieved at epoch 13**
37
-
38
- | 14 | 1.042 | 63.76% | 60.40% | 59.00% |
39
- **New best accuracy achieved at epoch 14**
40
-
41
- | 15 | 0.997 | 65.18% | 62.35% | 60.40% |
42
- **New best accuracy achieved at epoch 15**
43
-
44
- | 16 | 0.955 | 66.08% | 66.00% | 62.35% |
45
- **New best accuracy achieved at epoch 16**
46
-
47
- | 17 | 0.908 | 68.75% | 68.30% | 66.00% |
48
- **New best accuracy achieved at epoch 17**
49
-
50
- | 18 | 0.881 | 69.69% | 67.45% | 68.30% |
51
- | 19 | 0.844 | 70.84% | 73.30% | 68.30% |
52
- **New best accuracy achieved at epoch 19**
53
-
54
 
55
  **Training stopped at epoch 19 after reaching target accuracy of 70%**
56
 
 
1
  # Training Log
2
 
3
+ | Epoch | Train Loss | Train Acc | Test Acc | Best Acc | Best Epoch |
4
+ |-------|------------|-----------|-----------|----------|-------------|
5
+ | 1 | 2.101 | 21.95% | 29.35% | 0.00% | 1 |
6
+ | 2 | 1.875 | 30.13% | 34.70% | 29.35% | 2 |
7
+ | 3 | 1.778 | 34.90% | 34.60% | 34.70% | 3 |
8
+ | 4 | 1.714 | 36.99% | 40.80% | 34.70% | 4 |
9
+ | 5 | 1.646 | 40.05% | 40.15% | 40.80% | 5 |
10
+ | 6 | 1.587 | 42.39% | 43.00% | 40.80% | 6 |
11
+ | 7 | 1.513 | 45.59% | 47.30% | 43.00% | 7 |
12
+ | 8 | 1.436 | 48.44% | 51.85% | 47.30% | 8 |
13
+ | 9 | 1.347 | 51.07% | 53.50% | 51.85% | 9 |
14
+ | 10 | 1.294 | 53.89% | 55.95% | 53.50% | 10 |
15
+ | 11 | 1.220 | 56.07% | 55.75% | 55.95% | 11 |
16
+ | 12 | 1.173 | 58.45% | 56.25% | 55.95% | 12 |
17
+ | 13 | 1.125 | 60.20% | 59.00% | 56.25% | 13 |
18
+ | 14 | 1.042 | 63.76% | 60.40% | 59.00% | 14 |
19
+ | 15 | 0.997 | 65.18% | 62.35% | 60.40% | 15 |
20
+ | 16 | 0.955 | 66.08% | 66.00% | 62.35% | 16 |
21
+ | 17 | 0.908 | 68.75% | 68.30% | 66.00% | 17 |
22
+ | 18 | 0.881 | 69.69% | 67.45% | 68.30% | 18 |
23
+ | 19 | 0.844 | 70.84% | 73.30% | 68.30% | 19 |
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
24
 
25
  **Training stopped at epoch 19 after reaching target accuracy of 70%**
26