ssaiteja16's picture
Update app.py
5a44b64 verified
raw
history blame
1.58 kB
import gradio as gr
import os
from loaddataset import ExtractRagBenchData
from createmilvusschema import CreateMilvusDbSchema
from insertmilvushelper import EmbedAllDocumentsAndInsert
from sentence_transformers import SentenceTransformer
from searchmilvushelper import SearchTopKDocuments
from model import generate_response
from huggingface_hub import login
from huggingface_hub import whoami
from huggingface_hub import dataset_info
# Load embedding model
QUERY_EMBEDDING_MODEL = SentenceTransformer('all-MiniLM-L6-v2')
WINDOW_SIZE = 5
OVERLAP = 2
RETRIVE_TOP_K_SIZE=10
hf_token = os.getenv("HF_TOKEN")
login(hf_token)
rag_extracted_data = ExtractRagBenchData()
print(rag_extracted_data.head(5))
#invoke create milvus db function
try:
db_collection = CreateMilvusDbSchema()
except Exception as e:
print(f"Error creating Milvus DB schema: {e}")
#insert embdeding to milvus db
"""
EmbedAllDocumentsAndInsert(QUERY_EMBEDDING_MODEL, rag_extracted_data, db_collection, window_size=WINDOW_SIZE, overlap=OVERLAP)
"""
query = "what would the net revenue have been in 2015 if there wasn't a stipulated settlement from the business combination in october 2015?"
results_for_top5_chunks = SearchTopKDocuments(db_collection, query, QUERY_EMBEDDING_MODEL, top_k=RETRIVE_TOP_K_SIZE)
print(results_for_top5_chunks)
def chatbot(prompt):
return whoami()
iface = gr.Interface(fn=chatbot,
inputs="text",
outputs="text",
title="Capstone Project Group 10")
if __name__ == "__main__":
iface.launch()