Saiteja Solleti
fine tuning and reranking is pushed
a46269a
raw
history blame
1.81 kB
import gradio as gr
import os
from loaddataset import ExtractRagBenchData
from createmilvusschema import CreateMilvusDbSchema
from insertmilvushelper import EmbedAllDocumentsAndInsert
from sentence_transformers import SentenceTransformer
from searchmilvushelper import SearchTopKDocuments
from finetuneresults import FineTuneAndRerankSearchResults
from model import generate_response
from huggingface_hub import login
from huggingface_hub import whoami
from huggingface_hub import dataset_info
# Load embedding model
QUERY_EMBEDDING_MODEL = SentenceTransformer('all-MiniLM-L6-v2')
RERANKING_MODEL = "cross-encoder/ms-marco-MiniLM-L-6-v2"
WINDOW_SIZE = 5
OVERLAP = 2
RETRIVE_TOP_K_SIZE=10
hf_token = os.getenv("HF_TOKEN")
login(hf_token)
rag_extracted_data = ExtractRagBenchData()
print(rag_extracted_data.head(5))
#invoke create milvus db function
try:
db_collection = CreateMilvusDbSchema()
except Exception as e:
print(f"Error creating Milvus DB schema: {e}")
#insert embdeding to milvus db
"""
EmbedAllDocumentsAndInsert(QUERY_EMBEDDING_MODEL, rag_extracted_data, db_collection, window_size=WINDOW_SIZE, overlap=OVERLAP)
"""
query = "what would the net revenue have been in 2015 if there wasn't a stipulated settlement from the business combination in october 2015?"
results_for_top10_chunks = SearchTopKDocuments(db_collection, query, QUERY_EMBEDDING_MODEL, top_k=RETRIVE_TOP_K_SIZE)
reranked_results = FineTuneAndRerankSearchResults(results_for_top10_chunks, rag_extracted_data, query, RERANKING_MODEL)
print(reranked_results)
def chatbot(prompt):
return whoami()
iface = gr.Interface(fn=chatbot,
inputs="text",
outputs="text",
title="Capstone Project Group 10")
if __name__ == "__main__":
iface.launch()